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—— Abstract
We consider the termination problem of term rewrite systems (TRSs). Dershowitz proved that
termination starting from arbitrary terms is equivalent to termination starting from all terms in the
right-forward closure (RFC), provided that the TRS is right-linear or orthogonal. In this paper we
provide a new proof of this result, and also include a later result that one can weaken orthogonality
to locally confluent overlay TRSs. All proofs have been verified in Isabelle/HOL.
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1 Introduction

A relation — is strongly normalizing w.r.t. a set of starting objects T, written SN(—,T), iff
there is no infinite sequence

to =11 —tag — 13— ... (*)

with g € T. If there is no restriction on the set of starting objects we just write SN(—).
In this paper we consider termination of first-order unsorted term rewrite systems R
where — is the rewrite relation —x of R and T is either the set of all terms, or RFC(R),
the right-hand sides of forward closure of R, also known as the right-forward closure of R.
This paper will illustrate a novel proof of the following result of Dershowitz, and this
theorem will also be generalized to a larger class of TRSs.

» Theorem 1 ([3]). Let R be a right-linear or orthogonal TRS. Then
SN(—=r) ¢— SN(—=g,RFC(R)).

Note that Theorem 1 has applications in termination proving, e.g., in combination with
the match-bounds technique [5, 6, 10]. Here, the change from all starting terms to just
RFC(R) can become crucial for a successful termination proof.

There is a challenge in verifying the proof of Theorem 1, e.g., in a formal setting.

One of the problems is that the definition of RFC(R) as it is understood nowadays
(defined via narrowing), differs from Dershowitz’ original definition [3] (defined via infinite
chains, where in infinite derivations—such as (x)—active positions are marked and have
to satisfy certain conditions). Moreover, the original proof stays at an intuitive level, e.g.,
by claiming that certain steps can be reordered in an infinite derivation, without providing
further details.

Dershowitz and Hoot provide an alternative definition of forward closures [4, Definition 6]
that is based on narrowing, and there is a clear correspondence to RFC(R). Unfortunately,
the connection between infinite chains [3] and infinite forward closures as they occur in [4,
Theorem 6] remains at an intuitive level in this paper. Note that this paper also includes an
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improved result: Theorem 1 is still true if one replaces orthogonal TRS by locally confluent
overlay TRS [4, Theorem 6].

The definition of infinite forward closures is made formal by Geupel. He also provides a
detailed proof of Theorem 1 for non-overlapping TRSs [8, Theorem 2], but does not consider
right-linear TRSs.

A detailed proof of Theorem 1 for the case of right-linear TRSs is partly provided by
Zantema [13, Section 6]: he restricts the theorem to string rewrite systems.

Our main contributions are:

The development of a novel proof of Theorem 1 for a definition of RFC(R) that is based

on narrowing, with the inclusion of locally confluent overlay TRSs.

The proof does not require any reordering of steps as in the original proof.

The full proof is formally verified in Isabelle/HOL, cf. IsaFoR version 3.5 [12].

2 Preliminaries

We assume familiarity with term rewriting [2] and recall important notions and notations.

We consider first order terms s, ¢, ¢, r,... € T(F,V) that consist of variables z,y, z,... € V
and function applications f(t1,...,t,) for n-ary symbols f € F. Substitutions o, 0, , . . . are
mappings from V to T (F,V), and we write to to substitute each variable z in a term ¢ by
o(x). Given a substitution ¢ and some set of variables X we write o [ X for the substitution
that restricts o to X, i.e., (0 | X)(z) =o(x) ifz € X, and (¢ | X)(z) =z if x ¢ X. We
denote the set of positions of t by Pos(t), t|, is the subterm of ¢ at position p and t[s],
replaces t|, by s in t at position p. The set FPos(t) is the set of function positions, i.e.,
FPos(t) = {p € Pos(t) | t|, ¢ V}. The strict subterm relation is denoted by >, i.e., s> ¢ iff
s # t and s|, =t for some p € Pos(s). Term ¢ is linear, if no variable occurs more than once
in ¢; Vars(t) is the set of variables of term t. We write mgu(s,t) = o if o is a most general
unifier of s and ¢.

A TRS R is a set of rules £ — r such that £ ¢ V and Vars(¢) O Vars(r). The rewrite
relation of R is defined as s =z p, t iff p € FPos(t), { = r € R, s|, = {p, and t = s[rp], for
some p,{,r, u. Narrowing of R is defined as s ~>z ;1 vars(s),p t iff p € FPos(t), { —r € R,
mgu(s|p, £) = u, and t = s[r],u, for some p, £, r, u where—in contrast to the rewrite relation—
unification is used instead of matching. For narrowing it is always assumed that the variables
of rule ¢ — r are renamed apart so that they are disjoint to Vars(s). We often omit the
subscripts in the rewrite and narrowing relation if these are not relevant or if they are clear
from the context.

The set of right-hand sides of a TRS R is denoted by rhs(R), and R is right-linear if all
terms in rhs(R) are linear. We refer to the definition of critical pairs to the textbook [2]. An
orthogonal TRS does not have any critical pairs. In an overlay TRS all critical pairs stem
from overlaps at the root. A TRS is locally confluent if all its critical pairs are joinable.

We are now able to define the right-forward closure of a TRS and recast Dershowitz’ and
our result using the notations that have been introduced.

» Definition 2 (RFC(R)). RFC(R) is the least set that contains rhs(R) and is closed under
narrowing.

RFC(R) ={t|s € rhs(R) A s ~§ t} = ~5(rhs(R))

» Theorem 3 ([3]). Let R be a right-linear or orthogonal TRS. Then SN(—r) is satisfied,
if SN(—x, RFC(R)) or SN(~x,rhs(R)).
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» Theorem 4 ([4, 12]). Theorem 3 is still valid, if one weakens “orthogonal TRS” to “locally
confluent overlay TRS”.

» Example 5. A subset of Toyama’s TRS is easily proved to be terminating by Theorems 3 and
4. For the TRS R = {f(a,b,2) — f(x,x,2),9(x,y) = x} we obtain rhs(R) = {f(z,z,x), x}.
Since both terms in rhs(R) are normal forms w.r.t. narrowing, in particular SN (~x, rhs(R))
is satisfied. Thus, by Theorem 3 (or by the stronger Theorem 4) we may conclude termination
of R.

» Example 6. The full version of Toyama’s TRS {f(a, b, z) — f(x,z,z),9(x,y) = =, g(z,y) —
y} is non-terminating. This TRS shows that one cannot just drop the pre-conditions on
the TRS in Theorems 3 and 4. The reason is that—similarly to Example 5—narrowing is
terminating if one starts from an arbitrary right-hand side of this TRS.

3 A Novel Proof of Theorem 3 and of Theorem 4

Before we start with the main proof of Theorem 4, let us first state some easy connections
between rewriting and narrowing.

» Lemma 7. If s =, t then s ~, , tu for some variable renaming pi.
If s~ p t then sp —p t.
If s~ p t for some variable renaming p then s —, tp= .

The first property of Lemma 7 shows that narrowing can simulate rewriting; the second
property is for the reverse direction, provided that one instantiates the starting term s by the
substitution p from the narrowing step; and finally, if narrowing just uses variable renamings
i, then it is basically rewriting (modulo variable renamings).

Note that SN(—x) is equivalent to SN(—x,o(rhs(R))), i.e., for termination analysis it
suffices to consider all instances ro of right-hand sides r of R: this can be seen by using a
minimal non-terminating term argument as it is used for dependency pairs [1].

The idea of the RFC termination argument is now that narrowing can recover o, so
one just needs to start from some right-hand side and will then piecewise reconstruct o to
simulate the non-terminating sequence, and at some point all narrowing steps will become
rewrite steps as in the third property of Lemma 7. To this end, we need the following result
which permits us to connect a rewrite step with source so with a narrowing step with source
s, provided that the position of the rewrite step is within s: one can decompose ¢ into uo’
and the rewrite step is already possible with spu.

» Lemma 8 (One-step simulation). If soc —, t and p € FPos(s) then there are s’ and pv and
o' such that

s~,p s and o = po’ andt = s'o’
or illustrated a bit differently where now the rewrite step is underlined:
so =spo’ — '’ =t and s~ s
Now assume there is some non-terminating derivation

S000 =19 2R 11 7R T2 7R ... (1)

The aim is to find some invariant on s and ¢ such that it is satisfied for sg and og. Moreover,
the invariant must be preserved by Lemma 8, i.e., the terms s’ and substitution ¢’ of this
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to ty to
S000 5101 5202

P

SoM101 S1H202 SoU303

So»\M/\:/l-V\/\;Sl»VW\?W\.;SQ,V\M,W\)...
Figure 1 Infinite Application of One-Step Simulation

lemma should also satisfy it. The reason is that with such an invariant an infinite narrowing
sequence can be constructed as in Figure 1. Moreover, one can further prove that eventually
all narrowing steps must be rewrite steps. Thus, SN (~x,{so}) and “SN(—xr,~xr ({s0}))
can be derived, and hence both SN (~x, {so}) and SN(—x,~% ({so})) are sufficient criteria
for proving SN(—x, {s000}).

» Lemma 9. Let I be some invariant such that all of the following is satisfied:
there is an infinite derivation as in (1),
1(s0,00),
if I(s,0) and so —, t then p € FPos(s), and
if I(s,0) and s ~», s and o = po’ then I(s',0’).
Then —SN(~g,{so}) and ~SN(—r,~% ({s0}))-

Proof. The proof works as follows. First, by using the invariant one can indeed construct the

infinite narrowing sequence as indicated in Figure 1. This already proves =SN(~x, {s0}).

Afterwards, it only needs to be shown that eventually all p; are variable renamings, so that

the narrowing steps in Figure 1 can eventually be turned into rewrite steps by Lemma 7.
To this end, observe that

to = 8000 = Sol101 = Sojt1jt202 = Sofi1j2/4303 = .. ..

Thus, sop1p2 - .. pn is an instance of ty for all n. Therefore, eventually all p; are variable
substitutions, i.e., p; : V — V for almost every 7. For these variable substitutions we infer

Vars(siviptiv1) = pip1(Vars(siy1)) C piva(Vars(sipg))
because s;u; — s;41 implies Vars(s;u;) 2 Vars(s;11), and hence

| Vars(siyipiv1)| < [pivr(Vars(sipi))| < [Vars(sip;)|

shows that | Vars(s;u;)| weakly decreases with increasing i. Thus, at some point | Vars(s;u;)|
becomes constant, and hence for all future 4, p;41 is a variable renaming. <

We now only need to find suitable invariants I to obtain Theorem 4.
Proof of Theorem 4: locally confluent overlay TRSs. Proving this second part of Theo-

rem 4 is quite simple with the help of Lemma 9: we define I such that I(s, o) is satisfied if o
is a normal form substitution, i.e., o(x) is in normal form w.r.t. —x for all z. Hence, by
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Lemma 9 we conclude that both SN (~»x,{s}) and SN(—x,~% ({s})) imply SN(—x, {sc})
for all normal form substitutions o, or replacing {s} by rhs(R) we arrive at:

SN (~g,rhs(R))V SN(—r, RFC(R)) implies SN(—g,o(rhs(R)))

The switch from SN(—x,o(rhs(R))) for all normal form substitutions o to full SN(—g) is
now performed using a result of Gramlich [9]: for locally confluent overlay TRSs, innermost
termination and termination coincide, and thus the restriction to normal form substitution
can be assumed without loss of generality. <

Proof of Theorem 4: right-linear TRSs. For this part of the proof we define I differently,
namely I(s,o) is satisfied if s is linear and o is a strongly normalizing substitution, i.e.,
SN (=g, {o(z) | z € V}).

Given some infinite derivation (1), we cannot immediately apply Lemma 9, but first have
to do some preprocessing as follows.

For an arbitrary rewrite step so —, t, it is either the case that p € FPos(s) (and we use
Lemma 8), or the rewrite step is completely inside o, e.g., below variable x. If s is linear,
then in the latter case the step so —, t can be simulated by narrowing with zero steps as
0 s and 0 =1 ¢’ where ¢’ is defined as the substitution that is obtained by
rewriting zo to the corresponding subterm of ¢. In this way one obtains so — ¢t = so’. So

follows: s ~~

in both cases (p € FPos(s) is satisfied or not), one can find a term s’ and substitution ¢’
such that t = s'0’ and I(s',0’) is satisfied. Moreover, s ~* s’. Hence, we can again obtain
an infinite simulation of the rewrite sequence by narrowing steps as indicated in Figure 1,
except that now some of the narrowing steps need to be replaced by equalities.

Note that we further obtain o;(Vars(s;)) (—r U>); ., 0it1(Vars(sit1)) where here
Vars(s;) is interpreted as the multiset of variables of a term, and (—x U>)q is the multiset
extension of relation —x Ub>. Since I enforces that the substitutions are strongly normalizing,
there must be some point £ such indeed a strict decrease is not possible anymore, i.e., for all
i > k, the relation o;( Vars(s;)) (—r U, ., 0ir1(Vars(siy1)) is not satisfied. Since such a
strict decrease is always obtained if the rewrite step is completely inside the substitution,
we know that for each ¢ > k, indeed the position of the rewrite step must be in s;. Hence,
we can apply Lemma 9 on the infinite derivation ¢, = sxor =R Skt+10k+1 —R ... and
obtain ~SN(~g,{sx}) and -SN(—=xr,~% ({sk})). In combination with sy ~»* s; this
nearly completes the proof as in the case for locally confluent overlay TRSs. There are two
additional steps that still need to proven.

First, we argue that invariant I is initially satisfied. To this end, we again refer to the
minimal non-terminating term argument: if R is not terminating, then there must be a
minimal non-terminating term u w.r.t. the subterm relation. Any infinite derivation must
make a root step at some point, so v =% fo =g ro for some rule £ — r € R, and ro is
non-terminating. By minimality of w it is easy to see that I(r, o) is satisfied, and we choose
so = and 0y = o as starting point of derivation (1).

The final issue is the preservation of the invariant, i.e., in particular we must show for
every narrowing step s; ~»r s;41 that linearity of s; is carried over to linearity of s;41. This
fact is stated in the upcoming Lemma 11. |

Before we show that narrowing preserves linearity, we first need the result that unification
preservers linearity. Note that not all participating terms have to be linear, which is crucial to
obtain linearity preservation of narrowing for TRSs that are right-linear, but not necessarily
left-linear.
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» Lemma 10 (Unification Involving Linear Terms, [11]). Let Vars(s) N Vars(t) = Vars(u) N
Vars(t) = 0, let t and u be linear. If s and t are unifiable with mgu(s,t) = o then uo is
linear.

Lemma 10 allows non-linearity of the left term s of the unification problem (s,t), whereas
the right term ¢ must be linear. This lemma is proven by generalizing (s,t) to multisets of
such unification problems, and then following the computation of a swap-free unification
algorithm. In such an algorithm there is no transition of the form that replaces (s,t) by
(t,s), with the overhead that there must be two rules for treating substitutions, one for pairs
(z,t) and one for (¢, z). Being swap-free is important to maintain the invariant regarding
linearity of the right-hand sides of a unification problem.

» Lemma 11 (Linearity Preservation of Narrowing, [11]). If v ~»g p, w and R is right-linear
and v is linear, then also w is linear.

Proof. We mainly need to choose suitable parameters in Lemma 10 in order to prove that w
is linear: we instantiate s by ¢, t by v|,, u by v[r],, and o by p. Here £ — r and p are the
applied rule and the unifier from the narrowing step, respectively. |

It remains as future work to verify computable approximations of RFC(R) (one might
start with string rewrite systems [13, Section 6], extend this to linear TRSs [7, Section 8] and
even further to right-linear TRSs [10, Section 8]) and then combine these approximations
with CeTA’s checker for match-bounds in order to support RFC match-bounds in CeTA.
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