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—— Abstract

We introduce affluence, a condition on composition that entails a finite family of rewrite relations is
terminating iff its union is (disjunctive termination), and relate it to jumping. Our proofs transform
infinite reductions in the family union into such in family members, by induction on family size.
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This note evolved in 4 acts: (I) Preponement (2006) introduced the proof-by-picture in Fig. 1,
obtaining Geser’s Cor. 5(2) (transitivity) and Doornbos and von Karger’s Cor. 12(1) (jumping) via
the contrapositive of that non-termination of a doubleton family transfers to one of its members;
(II) Preponement (2011) recast the proof as a transformation into progressive reductions (Def. 3);
(III) More Modular Termination (2023) showed Podelski and Rybalchenko’s Cor. 8(3) and Dawson,
Dershowitz and Goré’s Cor. 14(1) follow from that reductions in finite families can be upgraded,
inductively using promotion for doubleton families (Def. 3), and introduced affluence (betwixt
transitivity and jumping; Sec. 2). It showed how to blend promotion results, modularising old and
suggesting new blends (Cor. 16); (IV) Here, we make the proof of promotion uniform, dependent on

restricting rewrite relations to the objects in ([; Def. 2) and along (|; Def. 9) a reduction.

1 Introduction

We model program execution by means of rewrite systems, where we leave the objects abstract
in order to not commit to any particular execution model. Suppose a program P comprises a
finite family (P); of program modules P; for ¢ € I, such that the rewrite relation — modelling
P is the union |J(—)r of the finite family (—); of rewrite relations modelling (P)y. It is
good science to aim for modularity, here, to try to show termination of P as a consequence
of termination of (each module in) the family (P);. Nailvely taken, this fails: both a > b
and b » a are terminating, but their union — := > U » is not, allowing the reduction cycle
a — b — a. The example exhibits feature interaction: composing steps from the different
modules > and » was not accounted for, and indeed led to non-termination. Therefore, to
account for that executions of P arise by composing executions of its modules in (P), it is
natural to make additional assumptions on compositions. We discuss two such assumptions,
affluence and jumping, showing statements for them of shape: for a finite family (—); and
— :=J(—)1, if there’s a —-reduction v having property P, then there’s a —;-reduction &
having property Q for some i € I. Our proofs transform - into § and are by induction on
the family size. Letting both P and Q express that the reduction is infinite, it then follows
by contraposition that — is terminating if (—); is, giving our main applications.

We use arrow-like notations —, », >, ... to denote rewrite relations, binary endorelations,
and 7,9, €, ... to range over reductions, sequences of consecutive steps of such, denoted by
repeated-arrows like —, B, 05>, . ... See the literature, e.g., [8], for more on rewriting.

2  Affluent families

» Definition 1 ([5, Def. 2.3]). »,> is affluent if >-» C>UD.
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Disjunctive Termination for Affluent Families

Enforcing affluence bars the monster in Sec. 1 since a - a though a > b » a. Affluence is
rich: (i) If » = > it expresses transitivy; (ii) confluence (flowing together) « - — C — - «
is strengthened by affluence (flowing toward, a river being a tributary), « - — C « U —»,
when instantiating > and » with inverse reductions « respectively reductions —»; (iii) For
less-than-or-equal < on the natural numbers the assumption n > - < m holds for any n,m as
0 < n,m, so affluence expresses totality: n > m or n < m; (iv) The prefix order C on finite
—-reductions is affluent, i.e. J, C is, iff — is deterministic (c¢f. the CompCert formalisation).
The intuition is that affluence affords to compress consecutive out-of-order steps to yield a
reduction that is progressive (»-steps occur before >-steps in the reduction) and preferential
(given an object in the reduction, »-steps from it are preferred over t>-steps). To generalise
that from two rewrite relations » and > to finite families later, we relativize affluence.

» Definition 2. Given a —-reduction vy, [y denotes restricting a rewrite relation to objects
in v and steps to be co-initial to some step in vy, and », > is affluent for a —-reduction v if
» [, > 7 is affluent, where — = » U D>.

Affluence entails affluence for any reduction ~: if a ((>[v) - (»[7)) b, then a,b in v and
a (>> - ») b by definition of restriction so a (> U ») b by assumption, so a ((t>y) U (»[7)) b
by definition. Observe that if —[y = — then — has at most one normal form, which if it
exists is the target of v and thus, if v is infinite any maximal reduction’® is infinite too.

» Definition 3. A reduction § is progressive if »-steps precede >-steps in § except possibly
for an infinite »-tail, and preferential if >-steps in § are from »-normal forms. For
— [y =—=w»UD> a reduction v upgrades to 4, denoted by 0 (promotes to §, denoted
by v 29) if § is co-initial to v, maximal and progressive (and preferential).

Observe if v ,§ then ¢ has shape w - > or w5 - B for @ < w with o = w if y is infinite.
» Lemma 4. For a reduction v with —[y = — = » UD> and »,> affluent, v, 24 for some 4.

Proof. Under the assumptions, let 6 be a maximal »-reduction co-initial to «y. If § is infinite,
then v, 24 for 4 := §. Otherwise, we construct a >-reduction € by initially setting it to the
empty reduction on the target of § and repeating as long as its target is not that of v and in
»-normal form, to append to € some >-step to an object that is either a »-normal form or
non-p-terminating, which we claim exists. = If € is infinite, then per construction v, - €,
so we set 4 to J - €, as visualised in Fig. 1 for reductions § and e, with 4 marking »-normal
forms in v; = If € is finite, its target is either non-»-terminating or the target of v and we
have v,/4 when setting 4 to ¢ - €, in the former case followed by any infinite »-reduction.
To prove the claim, note an object b being in »-normal form and not the target of =,
has a step b > ¢ for some c. If ¢ is in »-normal form we return the >-step to it. Otherwise,
c » ¢ for some ¢’. By br>cw ¢ and affluence, we have br> ¢ as we cannot have the other
disjunct? by b being in »-normal form. Repeating this for ¢’ instead of ¢, we eventually end
up in the first case or find an infinite reduction ¢ » ¢’ » ... so return the >-step to c. <«

Assuming a non-terminating —-reduction -y were to exist, restricting affluent », > to vy allows
one to conclude to non-termination of » or > by Lem. 4 (using the observations), so:

» Corollary 5. Let — := » U>. B, > are terminating iff — is, if: 1. », > is affluent [2, 1];
2. —» - — C — (transitivity) [3, pp. 31,32][2, 8, 6, 1].

1 A reduction is mazimal if it is infinite or ends in a normal form [8]. Computations in [6] are maximal.
2 That is, we cannot have the other operand of the union in the definition of affluence, Def. 1 here b» .. ..
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Figure 1 Transformation of v into ¢ - € of shape »» - > in the proof of Lem. 4 with v,2J - €

We extend the above to finite families (—); of rewrite relations with I ordered by <.

» Definition 6. For F := (=) a family of rewrite relations, F is affluent if —~; - —; C
— = F forie€l, and affluent for a reduction v if (—[v)r is affluent.

Affluence entails affluence for any reduction v and (J(—=1v)r = (U F) v, by distributivity.
From now on we let index-sets range over intervals [¢, n] of natural numbers. A reduction ¢ is
progressive if —;-steps precede — j-steps in ¢ for ¢ < j, except possibly for an infinite —-tail
for some k, so has shape — - ... —, (- —=¥%) with the last part optional, and preferential if
from any source of a —j-step in  there’s no —;-step, for i < j.

» Theorem 7. Let vy be a reduction with — |y = — = J F with F := (=), and let / be
defined as in Def. 8 under these assumptions. If F is affluent, then v e for some e.

Proof. By induction on n - ¢ with base case Lem. 4. Otherwise, the —-reduction v can be
seen as a (» U D> )-reduction for » := —, and > := | J(—) s with J := [+ 1,n]. Then », > is
affluent, so v,/4 by Lem. 4 with 4 of shape either »» - &> - B or #->“ for @ < w. In either
case let § be the >-subreduction of 4. The family (—0), is affluent for ¢ since not only are
the objects in § objects in v by v,/4, they are (when source of a step in d) in »[y-normal
form, entailing (—[d) -steps compose to other such, cannot compose to »-steps (Cf. the
proof of the claim in Lem. 4, footnote 2). Hence the IH applies to J yielding 5/‘3 with & of
shape —¢41 - ... =, (- —%) with the last infinite part (for some £+ 1 < k < n) optional.
Setting € to the reduction obtained by substituting® $ for 0 in 4 we conclude to v, "e. <

» Corollary 8. Let F := (—); and — = F. 1. F is terminating iff — is, for affluent F;
2. F = (»,>,>>) is terminating iff — is, if (>-»)U(>-»)U(>->) C — [1, Thm. 2/;
3. F is terminating iff — is, if = - — C — (transitivity; disjunctive termination) [6].

Whereas Cor. 8(3) cannot be proven directly from Cor. 5(2) by induction on family size, as
argued on [7, p. 1218], it does not follow as implied there that one can’t proceed by induction:
we showed Thm. 7 from Lem. 4 inductively, having the former as consequences.

3  Jumping families

Sec. 2 was written such that its development (Def. 2,Def. 3,Lem. 4,Def. 6,Thm. 7) is preserved
when replacing affluence and | everywhere by jumping and |, both defined next, where |
relaxes restriction | (Def. 2) to accommodate that jumping is weaker? than affluence.

3 We use the convention that concatenating to an infinite reduction yields the infinite reduction.
4 Tt can be further weakened to yumping, by adding » - —* as a third disjunct to its right-hand side.
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» Definition 9. », > is jumping if >-» C >U(»-—) for — := »UD [2, 1]. For —-reduction
v, |y restricts a rewrite relation to objects ¢ along =, i.e. to objects ¢ such that the source of
v reduces to ¢ and c reduces to the target of v (if any) or is not terminating.

Jumping entails jumping for any reduction 7 using that if § : @ — b for a, b along v then all ¢
in § are along 7. If —|y = —, only the target of v (if any) can be a normal form, since if ¢ is
non-terminating, then some d with ¢ — d is non-terminating too.

» Lemma 10. For reduction v with —|y = — = » U> and »,> jumping, v, /4 for some 4.

Proof. With the above replacements, the proof is that of Lem. 4 including it being illustrated
by Fig. 1, where 4 now marks »-normal forms along v, not necessarily in v, cf. [5, Fig. 7]. <

» Example 11. » > given by a’ > aand v:a>bw» cand e:a » a’ » a’ » ..., is jumping
but not affluent: v promotes (only) to € with objects of « all along v, not all in v (a’ isn’t).

» Corollary 12. Let — :=» U. 1. B, > are terminating iff — is, for jumping »,> [2];
2. a w> - > if a is »-terminating but not —-terminating, and >-» C »-> (o) [4, Lem. 51].

Proof. 2. If a —»%“ 74 then #4 is not of shape a - & - p“ as o entails &> - » C » - . <«
Call a family F jumping [1] if =<, - —; C —s; U (= - —»>;) forie .’

» Theorem 13. Let v be a reduction with —|y = — = J F with F := (=)jp,,) and let /* be
defined as in Def. 8 under these assumptions. If F is jumping, then v "€ for some €.

Proof. With the above replacements, the proof is that of Thm. 7, using Lem. 10 instead of 4
with the IH applicable since (—|d) j-steps compose to other such by J being a suffiz of I. <

» Corollary 14. Let F := (=), = := U F. 1. F is terminating iff — is, for jumping F [1];
2. F = (»,>,>) is terminating iff — 4s, if (> U>)-» C (>U>)U (> - —%) and
S>> C>U (> (>U>)*) 1, Thm. 8.

4 Blending Affine and Jumping Families

Blending families [1] is limited only by (correctnes of) one’s illusion. We give examples.

» Lemma 15. Let v be an F-reduction for F := (=) and I := [{,n], and let — :=J F.
v € for some €, if: 1. —~;-—; C —soU(—-—) for £ <i <n (affluence~ ); or 2. »;, —~;
is affluent for all i (partite), for € a G-reduction €,% with G := (»)y,,) and »; := =7} for
i<nand Wy, =, 0r 3. =i C =5 U= U (=) for £ <i<n (partite~ ).

Proof. 1. v can be seen as a (—¢|vy, —=>¢|y)-reduction. By assumption and Lem. 10, v 24
for some 4. Let 0 be the —~ |y-subreduction of 4. Viewed as a (—~¢|v)[d-reduction, Thm. 7
yields § 6 for some &, and we conclude by setting € to 4 in which ¢ is replaced by 5. Thm. 7
is applicable to ¢ since the second disjunct of affluence,, cannot hold, reducing it to affluence:
if a =y ¢ - b for a,b in §, with a the source of some (—~¢|7y)-step in d, then a, b and hence ¢
would be along 7 by d being part of 4, contradicting that a be in —|y-normal form per v, 75.
2. Adaptating the proof of Thm. 7 using bait and switch in the induction: a —>;-reduction
7 (the bait) can be seen as a (»; |7y, —>;[7y)-reduction (the switch) since —; C —F. By
assumption and Lem. 4 that promotes to some 4, from which we conclude by applying the
IH to its —;[vy-subreduction, yielding ¢; 3. As for 1 but using 2 instead of Thm. 7. <

5 We based jumping of (=)[e,n) on that of (—)g41,n]- For basing it on (—=)[¢,n,~1) see [1, Thm. 7, Cor. 20].
5 Though objects in € must be in +, this no longer holds if we unfold its —>;r-steps into single —;-steps.
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» Corollary 16. F := (=) is terminating iff — = J F is, if: 1. affluence~ ; or 2. partite;
or 3. partite~ [1, Thm. 22]; or 4. F = (»,1>,>>) and (>U>)-» C>USU(P-(PU>U>)Y)
and > 1> C > UTU (- (»U>U>)*) (jumpings) [1, Thm. 4]; or 5. for some k < n,
—>i §—>>0U(%0-—») fori <k, and —=<; - —; §—>>iU(—>i-—»2i) fork <i<n
(affluence? ); or 6. for some k < n, —~;-—; C —s;U—F U (=0 —) fori <k, and
=i C =5 U (= —>y) for k <i<n (partite>) [1, Thm. 28].

» Example 17. —-;-—; C — U (—; - —>;) for all 4, may seem a harmless blend of affluence
and jumping, but though it holds for the terminating family F := (»,>,>) [1, Ex. 9(a)]
given by b» d, c>d > a > b, and a > d, b > ¢, |J F is non-terminating: a > d > a.”

5 Conclusions

By modularising (factoring through promotion Def. 3) and unifying (transitivity, affluence,
jumping via restriction (Defs. 2 and 9)) proofs, we related disjointed results on disjunctive
termination [3, 2, 6, 1] and improved upon them (e.g., Cor. 8(1)). Ideas for further research:
(I) Recast using 2-rewriting for transducing (infinite) reductions; (IT) Exploit progressiveness
and sharpen promotion to (re)gain quantitative results, like [7] and quasi-commutation;
(IIT) Automate results in tools (to handle, e.g., Ex. 18) and formalise them (aziomatically?).

» Example 18. 1. [6, Fig. 2 (CHOICE)] presents a program having transition relation R
given by relating pairs of natural numbers (z,y) and (z’,y’) if the latter is either (x =~ 1, x)
or (y = 2,2 + 1), assuming x,y > 0, and a doubleton family F := (»,>>) of relations
» =Pz, y) AN(QV P(z',y)) and > := P(z,y) N\QA P(2',y) for Q :=x+y > 2’ +y and
P(n,m):=m=2<n<m-=1. Then RC —:=JF, > -» =, and F is terminating since
@ is and since P and =P do not compose, yielding affluence of », > hence termination of —
by Cor. 5(1), so R is terminating. 2. [7, Ex. 6.1] presents a program having transition relation
R given by (z,y) —zsyga>0&y>0 (¥,27°7Y) and (2,y) = (@>y)ee>0sy>0 (T,y — 1), and a
doubleton family F := (», I>) of terminating relations » := {({x,y), (z/,y")) | z > 0&z > 2’}
and > = {({x,y),(z/,y)) | y > 0&y > y'}. Then R C |JF but affluence of F fails.
Restricting > by {({z,y), (z/,y')) | © > 2’} guided by R, both hold and Cor. 5(1) applies.
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