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—— Abstract

We report on Cetera, a program and library for checking termination certificates for string rewriting.

The library is certified in the dependently typed programming language Agda. For now, Cetera
contains well-founded monotone monoids (instantiated to weights and standard matrices) and allows
modular removal of rules (by relative termination). We are currently working on the RFC (right-hand
sides of forward closures) theorem. Proofs in Agda are constructive, so they sometimes differ from
standard presentation.
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1 Introduction

The termination method of sparse tiling [8] for string rewriting systems, implemented in
Matchbox and MultumNonMulta, turned out to be quite powerful (for present benchmarks,
at least). It uses the RFC (right-hand sides of forward closures) method, which was
absent from libraries for verified termination [6, 4, 11]. The goal of our library Cetera
(https://git.imn.htwk-leipzig.de/waldmann/cetera/) is to verify sparse tiling.

Matchbox is implemented in the pure functional programming language Haskell. Haskell’s
type system is moving towards dependent types (for example, it has generalized algebraic
data types), and this suggests verification with Agda [5], a dependently typed programming
language based on Martin-Lof type theory.

2  Termination and Non-Termination in Agda

Termination is formalized constructively by an accessibility predicate [10]. The following
Agda type SN R x specifies that for relation R on a set a, the element = € a is terminating
(strongly normalizing), if each R-successor y of x is terminating.

data SN {a : Set} (R : Rel a) (x : a) : Set where
sn : (forall (y : @) >R xy ->SNRy)->SNRx

A termination proof of R is an Agda expression of type forall (x : a) -> SN R x, that
is, an Agda-computable function that builds (more precisely, bounds the depth of) the R-
derivation tree of input z. Ultimately, this method reduces termination of R to termination
of Agda programs in our library, checked by Agda’s type checker [1, 2]. There are terminating

R that have no such proof, since Agda is, by design, not Turing-complete.
The element z is non-terminating if there is a function f : N — a that represents an
infinite R-derivation z = f(0) - g f(1) =g ..., formally,

data INF {a : Set} (R : Rel a) (x : a) : Set where
inf : (f : Nat -> a) -> (f zero == x)
-> (forall (y : Nat) -> R (f y) (£ (succ y))) -> INF R x

Again, since the function f is Agda-computable, we miss some forms of non-termination.
We can easily prove in Agda that SN R x and INF R x cannot hold at the same time.
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3 The Present: Well-founded Monotone Monoids

We consider pairs (>, >) where > is terminating, > is reflexive and transitive, and >o0> C >
as well as > o> C >. Then R C > and S C > implies termination of R relative to S,
allowing to remove rules (of R) in an incremental proof of termination (of RU.S). We realize
such pairs by orders on matrices [9] of shape Ey 4 = {m | m € N®*4 m; 1 > 1,mgq > 1}
where L > R if (L —R) € P, = {m |m € N¥4 m; ;> 1} and L > R if (L — R) € N¥x4,

In the Agda program, we represent matrices as functions Fin d -> Fin d -> Nat, where
Fin d denotes {0,...,d — 1}. This allows for easier proofs than the concrete representation
Vec d (Vec d Nat), where Vec d denotes lists of length d. If we want to use Agda’s built-in
equality for functional matrices, then we need the extensionality axiom.

The extracted code for checking certificates does indeed multiply matrices. The functional
matrix representation does not share computations for intermediate products, so a chain of
matrix multiplications has exponential cost. This can be reduced to linear cost in the length
of the chain by conversion from function to data, which allows sharing.

4 Implementation and Experiments

For now, Cetera uses Haskell syntax for systems and certificates. Identifiers are renamed to
numbers. Printers and parsers are obtained from deriving (Show, Read). A certificate for
{abaabb — aababba} (Zantema 04/z049) is

Certificate
{ system = [Rule { lhs = [0, 1, O, O, 1, 1], rhs = [0, O, 1, O, 1, 1, 0]}]
, reason = MatrixInterpretation
{ minterpretation = MatrixInterpretation
{ dim = 4
, int = [ (2, [[1, O, O, 01, [0, O, 1, O], [0, 1, 1, 1], [0, O, O, 111)
, (o, [I1, 1, 0, 01, (O, 1, O, O1, [0, O, O, O], [0, O, O, 111) 1}
, remove = [Rule {1lhs = [0, 1, O, O, 1, 1], ths = [0, O, 1, O, 1, 1, O]}]
, sub = Certificate { system = [], reason = Empty}}}

Using only weights and matrix interpretations, with a time-out of 30 seconds, Matchbox
proves termination for 488 (of 1658) benchmarks in SRS Standard. The largest certificate
occurs for ICFP_2010/26871. It has 60k non-whitespace characters, and takes 0.07 seconds
to verify. Total verification time over all certificates is < 5 seconds.

Larger certificates will appear with semantic labelling via full or sparse tiling [8].

5 The Future: Right-Hand Sides of Forward Closures

Termination of R follows from termination of R on the set of right-sides of forward closures
RFC(R) [7]. We formalize this claim in Agda as

sn-RFC : {C : Set 1} (R : Rel (List C) 1)
-> (forall (x : List C) -> RFC R x -> SN-from (Rewrites R) x) -> SN (Rewrites R)

The classical proof is non-constructive, as it derives a contradiction from the existence
of an infinite derivation. For a constructive proof, we need to embed an arbitrary R-
derivation into a well-founded order. The idea is to simulate the original derivation by
a derivation on sequences of blocks where a block is a single letter, or the right-hand
side of a forward closure. The key idea is that a step on a sequence of blocks is length-
lexicographically (from the right) decreasing w.r.t. the order (—x U J,)™ on blocks. Here
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s is the strict suffix relation, and it comes into play since an extension (narrowing) step
of a closure eats a prefix of the neighbouring block. We use a commutation property [3]
(ToS)C (SoT)ASN(T)ASN(S) = SN(SUT) for T = 15, S = —p. Note that —7, is only
used when starting from RFC(R), as in the premise of Theorem sn-RFC.

We are currently working on proving the theorem. To use it for certificate checking,

Cetera is still missing a finite description of (an over-approximation of) RFC(R). This could
be a matchbound automaton, or a shift automaton (of tiles) [8].
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