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Abstract
We present mu-term gtrs, a tool for proving termination of Generalized Term Rewriting Systems
(GTRSs), where rewriting computations are defined by rules that may include not only conditions in-
volving reachability, joinability, and conversion, but also atoms defined by Horn clauses—particularly
conditions expressing relations among terms (e.g., sort information, subterm relations, etc.). Ter-
mination control is enhanced through the use of a replacement map, which explicitly specifies
the argument positions of function symbols where rewriting is allowed. GTRSs offer a powerful
framework for modeling computations in advanced reduction-based languages such as Maude.
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1 Introduction

A Generalized Term Rewriting System (GTRS [10]) is a tuple R = (F , Π, µ, H, R), where F
is a signature of function symbols; Π is a signature of predicate symbols, including → and →∗;
µ is a replacement map i.e., for all k-ary function symbols f ∈ F , µ(f) ⊆ {1, . . . , k} is the
set of active arguments on which rewriting steps are allowed [9]; H is a set of definite Horn
clauses A ⇐ c, where the predicate symbol of A is not → or →∗; and R is a set of rewrite
rules ℓ → r ⇐ c [10, Definition 51]. In both cases, c is a sequence of atoms. Programs of
reduction-based systems like Maude [2] can often be encoded as GTRSs [10, 11, Section 8].

▶ Example 1. The Maude program OvConsOS in Figure 1 (left) exemplifies the use of
functions on both finite lists (predicate NatList) and infinite lists (predicate NatIList) of
natural numbers 0, s(0),. . . , built using the list constructor cons, which is made “lazy” for the
evaluation of the second argument by means of a strat annotation. Symbol zeros represents
an infinite list of 0. Although take can be used to obtain a finite prefix of an infinite list,
length should be applied to finite lists only. Thus, explicit sorts are given to inputs and
output of functions (e.g., length : NatList -> Nat). The GTRS R in Figure 1 (right),
given in the extended COPS format for GTRSs of [6], permits a proof of termination of
OvConsOS, which depends on the appropriate sorting of function symbols (length can only
be applied to finite lists) and the use of µ(cons) = {1}.

Termination of GTRSs R in the usual sense, i.e., as the absence of infinite rewrite sequences
t1 →R t2 →R · · · , has been studied in [11] using appropriate notions of dependency pairs.
This paper presents mu-term gtrs1, a tool for automatically (dis)proving termination of
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2 2 TERMINATION OF GTRSS USING DEPENDENCY PAIRS

fmod OvConsOS is
sorts Nat NatList NatIList .
subsort NatList < NatIList .
op 0 : -> Nat .
op s : Nat -> Nat .
op zeros : -> NatIList .
op nil : -> NatList .
op cons : Nat NatIList -> NatIList [strat (1 0)] .
op cons : Nat NatList -> NatList [strat (1 0)] .
op take : Nat NatIList -> NatList .
op length : NatList -> Nat .
vars M N : Nat .
var IL : NatIList .
var L : NatList .
eq zeros = cons(0,zeros) .
eq take(0,IL) = nil .
eq take(s(M),cons(N,IL)) = cons(N,take(M,IL)) .
eq length(nil) = 0 .
eq length(cons(N,L)) = s(length(L)) .

endfm

(VAR M N L IL)
(REPLACEMENT-MAP
(cons 1)

)
(HORN-CLAUSES
NatIList(L) | NatList(L)
Nat(0)
Nat(s(N)) | Nat(N)
NatList(nil)
NatList(cons(N,L)) | Nat(N), NatList(L)
NatIList(zeros)
NatIList(cons(N,IL)) | Nat(N), NatIList(IL)
NatList(take(N,IL)) | Nat(N), NatIList(IL)
Nat(length(L)) | NatList(L)

)
(RULES
zeros -> cons(0,zeros)
take(0,IL) -> nil | NatIList(IL)
take(s(M),cons(N,IL)) -> cons(N,take(M,IL))

| Nat(M), Nat(N), NatIList(IL)
length(nil) -> 0
length(cons(N,L)) -> s(length(L))

| Nat(N), NatList(L)
)

Figure 1 The Maude module OvConsOS in [3, Figure 1] and mu-term gtrs module

Table 1 Generic sentences of the first-order theory of rewriting

Label Sentence
(Rf) (∀x) x →∗ x

(Co) (∀x, y, z) x → y ∧ y →∗ z ⇒ x →∗ z

(Pr)f,i (∀x1, . . . , xk, yi) xi → yi ⇒ f(x1, . . . , xi, . . . , xk) → f(x1, . . . , yi, . . . , xk)
(HC)A⇐A1,...,An (∀x1, . . . , xp) A1 ∧ · · · ∧ An ⇒ A

where x1, . . . , xp are the variables occurring in A1, . . . , An and A

GTRSs based on the Dependency Pair Framework introduced in [11].

2 Termination of GTRSs using Dependency Pairs

A GTRS R = (F , Π, µ, H, R) determines a first-order theory R = {(Rf), (Co)} ∪ {(Pr)f,i |
f ∈ F , i ∈ µ(f)} ∪ {(HC)α | α ∈ H ∪ R} (see Table 1). Note that rules in R are Horn clauses
which are often given a label α.

▶ Example 2. The GTRS in Figure 1 (right) is R = (F , Π, µ, H, R) in Figure 2, where F =
{0, s, nil, cons, zeros, take, length}, Π = {→, →∗, Nat, NatList, NatIList}, µ(cons) = {1} and
µ(f) = {1, . . . , k} for all k-ary f ∈ F − {cons}, H = {(1), . . . , (9)}, and R = {(10), . . . , (14)}.

For all terms s and t, we write s →R t (resp. s →∗
R t) iff R ⊢ s → t (resp. R ⊢ s →∗ t); R is

terminating iff there is no infinite sequence t1 →R t2 →R · · · .
Symbols f ∈ F are called defined if root(ℓ) = f for some ℓ → r ⇐ c ∈ R. A subterm t of

s is active (regarding µ, written s �µ t) if s = t or s = f(s1, . . . , si, . . . , sk) and si �µ t for
some i ∈ µ(f). We say that t is frozen in s (written s �

�µ
t) if s� t and s �̸µt. As for the DP

approach for TRSs [1, 8], ‘classical’ dependency pairs for GTRSs R = (F , Π, µ, H, R) are:

HDP(R) = {ℓ♯ t→ v♯ ⇐ c | ℓ → r ⇐ c ∈ R, r �µ v, root(v) is defined, and ℓ �̸µv}

with t→ a new predicate symbol. For t = f(t1, . . . , tk), let t♯ = f ♯(t1, . . . , tk) for a new symbol
f ♯, often capitalized as F . For R in Ex. 2, HDP(R) = {(15)} with

LENGTH(cons(N, L)) t→ LENGTH(L) ⇐ Nat(N), NatList(L) (15)
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NatIList(L) ⇐ NatList(L) (1)
Nat(0) (2)
Nat(s(N)) ⇐ Nat(N) (3)
NatList(nil) (4)
NatIList(zeros) (5)

NatIList(cons(N, IL)) ⇐ Nat(N), NatIList(IL) (6)
NatList(cons(N, L)) ⇐ Nat(N), NatList(L) (7)
NatList(take(N, IL)) ⇐ Nat(N), NatIList(IL) (8)
Nat(length(L)) ⇐ NatList(L) (9)

zeros → cons(0, zeros) (10)
take(0, IL) → nil ⇐ NatIList(IL) (11)
take(s(M), cons(N, IL)) → cons(N, take(M, IL)) ⇐ Nat(M), Nat(N), NatIList(IL) (12)
length(nil) → 0 (13)
length(cons(N, L)) → s(length(L)) ⇐ Nat(N), NatList(L) (14)

Figure 2 GTRS for the Maude module OvConsOS in [3, Figure 1]

Dependency pairs for TRSs are useful to encode (possibly) infinite rewrite sequences (see
[8]). However, in order to properly capture termination of GTRSs we also need collapsing
dependency pairs [11, Sect. 5] to handle computations involving conditions and context-
sensitive replacement restrictions. By expressing special features of conditional and context-
sensitive dependency pairs as Horn clauses, we obtain a new valid GTRS as a result. While [11,
Def. 16] defines them for GTRSs, we refine this using the richer framework from [4], based
on hidden terms and hiding contexts.

A term t such that root(t) is a defined symbol is hidden if there is a rule α : ℓ → r ⇐ c

such that t is a frozen subterm of r: r �
�µ

t; HT (R) is the set of hidden terms in R.

▶ Example 3. For R in Example 2, HT (R) = {zeros, take(M, IL)} (in red on the right-hand
sides of (10) and (12)).

Instances of hidden terms are the only ones which may become active when matched by
a left-hand side. More precisely, a function symbol f hides the active argument position
i ∈ µ(f) in the right hand side r of α if r �

�µ
f(r1, . . . , rk) for some terms r1, . . . , rk, and ri

contains (a) an active defined symbol or (b) an active variable which is (b.1) frozen both in ℓ

and r, and (b.2) not active in ℓ or r.
When dealing with conditional rules ℓ → r ⇐ c, collapsing dependency pairs are also nec-

essary to capture the continuation of infinite rewrite sequences on subterms s of instances σ(x)
of variables x occurring in r but not occurring in ℓ and possibly occurring in the conditional
part c, see [15, Sect. 4.3]. Let ϖ�unh , ϖ�µ and Mk be new (binary) predicate symbols (denoting
the hiding and active subterm relation on terms, and the marking of terms), respectively de-
fined by sets of clauses Unh(F) = {x ϖ�unh x}∪{f(x1, . . . , xi, . . . , xk) ϖ�unhx

′
i ⇐ xi ϖ�µ x′

i |
f ∈ F , f hides i}, Subt(F , µ) = {x ϖ�µ

x} ∪{f(x1, . . . , xi, . . . , xk) ϖ�µ
x′

i ⇐ xi ϖ�µ
x′

i | f ∈
F , k = ar(f), i ∈ µ(f)}. and Mark(F) = {Mk(f(x1, . . . , xk), f ♯(x1, . . . , xk)) | f ∈ F , k =
ar(f)}, respectively. Then, we let

HDPC (R) = {ℓ♯ t→ t♯ ⇐ c, x ϖ�unh t | ℓ → r ⇐ c ∈ R, t ∈ HT (R), and
x ∈ Var(ℓ) ∩ [Varµ(r) − Varµ(ℓ)]}

∪ {ℓ♯ t→ x′′ ⇐ c, x ϖ�µ x′, Mk(x′, x′′) | ℓ → r ⇐ c ∈ R, and
x ∈ Varµ(r) − Var(ℓ) and x′ and x′′ are fresh variables} (16)

where, given a term t, Varµ(t) is the set of variables which occur active in t.
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▶ Remark 4. In contrast to (16), in [11, Def. 16] HDPC (R) only considers the second group
of collapsing pairs with x ∈ Varµ(r) − Varµ(ℓ). Then, for R in Example 2, HDPC (R) would
consist of a single (collapsing) pair

LENGTH(cons(N, L)) t→ L′′ ⇐ Nat(N), NatList(L), L ϖ�µ
L′, Mk(L′, L′′) (17)

▶ Example 5. For R in Example 2, using (16), HDPC (R) = {(18), (19)} with

LENGTH(cons(N, L)) t→ ZEROS ⇐ Nat(N), NatList(L), L ϖ�unh zeros (18)

LENGTH(cons(N, L)) t→ TAKE(M, IL) ⇐ Nat(N), NatList(L), L ϖ�unh take(M, IL) (19)

▶ Definition 6. Let R = (F , Π, µ, H, R) be a GTRS whose set of defined symbols is D.
The GTRS DPHC (R) = (FHC , ΠHC , µ♯, HHC , R), where: FHC = F ∪ D♯; ΠHC = Π ∪
{ϖ�unh , ϖ�µ

, Mk}; for all f ∈ FHC , µ♯(f) = µ(f) if f ∈ F and µ(g) if f = g♯ for some
g ∈ D; and HHC = H ∪ Unh(F) ∪ Subt(F ∪ D♯, µ♯) ∪ Mark(D) ∪ HDP(R) ∪ HDPC (R).

▶ Theorem 7. A GTRS R is terminating if there is no infinite minimal DPHC (R)-chain2.
If there is an infinite DPHC (R)-chain, then R is not terminating.

In the following, given a GTRS R, we write PR to denote the subset of Horn clauses in R of
the form u

t→ v ⇐ c. Note that PDPHC (R) = HDP(R) ∪ HDPC (R).

3 Implementation of the DP Framework for GTRSs.

mu-term gtrs is implemented in 27 Haskell modules including around 4000 loc. The tool
has been developed independently from mu-term [5] only using semantic processors, so they
are independent tools. A specific parser has been created to accept the TPDB notation3

enriched with a new block HORN-CLAUSES to specify them (see Figure 1)4. To implement the
framework, the followign data type is used:

1 data GTRS c
2 = GTRS { gName :: Map Int String, gArity :: Map Int Int, gMu :: Map Int [Int]
3 , gSymbols :: Set Int, gVariables :: Set Int , gPredicates :: Set Int
4 , gEquations :: Set (CEquation c), gHornClauses :: Set (HornClause c)
5 , gRules :: Set (CRule c), gLabel :: String} deriving (Eq,Show)

We use the muterm-framework library to define instances of problems, processors, and also
strategy combinators to easily define our strategy (see below).

6 data Problem typ p = Problem typ p
7 −− | GRewriting problem
8 data GRewriting = GRewriting PScheme deriving (Eq, Ord, Show)
9 −− | Problems contains a rewrite system

10 class IsProblem typ problem | typ −> problem where
11 getProblemType :: Problem typ problem −> typ
12 getR :: Problem typ problem −> problem
13 −− | GRewriting problem is a Problem
14 instance IsProblem GRewriting where
15 data Problem GRewriting a = GRew PScheme a deriving (Eq, Ord, Show)
16 getProblemType (GRew m _) = GRewriting m t
17 getR (GRew _ r) = r

2 We use the natural extension of chain, see [11, Definition 14]
3 https://www.lri.fr/~marche/tpdb/format.html
4 As part of future work, we aim to extend the ARI format as well.

https://www.lri.fr/~marche/tpdb/format.html
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where PScheme is a pair that records whether the current problem can be proved terminating or
non-terminating. Initially, PScheme has the value (m, a); this means that to test termination,
we start with minimal sequences, but to test non-termination, we start with arbitrary
sequences. A processor modifies the pair values depending on whether the processor is sound
or complete. These flags can only have the following values: m for minimal, a for arbitrary,
or • to indicate that the processor returns an incompatible type. The computation of the
initial GTRS problem is treated as a special dependency pair processor :

18 data DPProcessor = DPProcessor
19 −− | The information obtained is the new GTRS
20 data DPProcInfo problem
21 = DPProcInfo { outProblem :: problem }
22 −− DPProcessor
23 instance (... functional dependencies ... )
24 => Processor info DPProcessor (Problem GRewriting trs)
25 (Problem GRewriting trs) where
26 apply DPProcessor inP = singleP (DPProcInfo outP) inP outP where ...

Each processor has its own name. The strategy combines the different processors in order to
find a proof tree. We use the following strategy:

1 grewStrat
2 = idProc .&. (mace4irProc .|. return) .&. dpProc .&. (infProc .|. simpProc .|. return)
3 .&. sccProc .&. fixSolver ((subProc .|. mace4rpProc .|. agesrpProc) .&. sccProc)

where mace4irProc removes infeasible rules of the input system, and the other names refer
to the processors described in [7, Section 5.1] and in [11, Section 7]. simpProc applies
simplification processors, infProc applies non-termination techniques and we use Mace4 and
AGES for the semantic RP processor. Finally, .&. and .|. are the ‘and’ and ‘or’ strategy
combinators, and fixSolver is a fix-point application strategy.

4 Conclusions and Future Work

We have presented mu-term gtrs, a new tool for proving termination of GTRSs. The tool
implements the Dependency Pair Framework for proving termination of GTRSs [11], although
we have introduced some relevant improvements in the treatment of collapsing dependency
pairs induced by the replacement restrictions (see (16) and Remark 4), advantageously
adapting the developments in [4]. All processors described in [11] have been implemented.
Besides, some processors developed for the Confluence Framework for proving confluence
of GTRSs [7] have been adapted and implemented as well. Since GTRSs can be used to
model Maude programs (see Example 1), the tool can be used to prove termination of
Maude programs. The stronger property of operational termination [13], which implies
termination (but not vice versa) has been defined for GTRSs in [12]. Operational termination
of GTRSs is also a subject for future work as it is important for a practical use of GTRSs,
as discussed in [14] in the context of rewrite theories.
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