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Abstract
Logically constrained simply-typed term rewriting systems (LCSTRSs) provide a form of rewriting
geared towards analysis of programs with higher-order features and both algebraic and primitive data
types. Termination of LCSTRSs has been studied for full rewriting without strategy assumptions.
This extended abstract adapts the higher-order constrained Dependency Pair framework for innermost
termination, which implies termination under call-by-value evaluation. The DP framework for
innermost termination effectively handles universal computability. This provides a foundation for
open-world termination analysis of programs using call-by-value evaluation via LCSTRSs.
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1 Introduction

In this extended abstract, we sketch techniques for proving termination of Logically Con-
strained Simply-typed Term Rewriting Systems (LCSTRSs) [14] for call-by-value evaluation.
LCSTRSs are a higher-order functional intermediate verification language, designed as a
compilation target for static analysis of programs with higher-order types. Our long-term goal
is for LCSTRSs to be the cornerstone for a two-stage approach to static program analysis:

1. The frontend of the analysis: Given a program P written in (a practically relevant
fragment of) the programming language L, translate P to an intermediate representation
as an LCSTRS RP . This translation must (provably) preserve the properties of interest
for our static analysis.

2. The backend of the analysis: Analyze RP using dedicated techniques for static analysis
of LCSTRSs. The answer carries over to the original property of P .

This approach has been applied successfully across paradigms to multiple programming
languages, such as Prolog [23, 10], Haskell [9], Scala [20], Java [21], and C [7], using various
flavors of (constrained or unconstrained) term rewriting instead of LCSTRSs.

Classic term rewriting without any pre-defined data types and operations is known to
be Turing-complete, which – in principle – makes it a sufficiently expressive intermediate
language for this methodology. However, for automated static analysis, being able to
represent programming language features directly, without cumbersome encodings, can make
the difference between a program analysis tool that quickly finds a proof of the desired
property and a tool that returns with an inconclusive result or times out.
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We believe that LCSTRSs fill a “sweet spot” for such an intermediate representation.
LCSTRSs integrate two strands of automated reasoning that have both proven useful for
program analysis: term rewriting – here with support for higher-order functions – and
Satisfiability Modulo Theories (SMT) solving.

In this extended abstract, we focus on step 2 of the above program analysis methodology.
We analyze termination of the call-by-value rewrite relation and the (slightly more permissive)
innermost rewrite relation of LCSTRSs. Call-by-value is a common evaluation strategy for
many programming languages (e.g., OCaml, Scala, . . . ), so analyzing LCSTRSs directly for
this rewrite strategy (or its generalization innermost rewriting) is a natural choice. Even for
languages with lazy evaluation strategies, such as Haskell, past work [9] has shown how a
frontend based on a form of abstract interpretation [3] can produce problems whose innermost
termination implies termination of the lazy evaluation relation of the original program.

As is standard for termination analysis of rewriting, we build on Dependency Pairs
(DPs) [1] and the DP framework [11, 12, 15]. The idea behind DPs is to prove termination of
each function call separately. The DP framework allows us to combine different termination
proving techniques, commonly referred to as DP processors, to simplify and decompose
the termination proof obligation at hand. The DP framework was recently adapted to
LCSTRSs [13]. However, this adaptation addresses termination for arbitrary rewrite strategies
(“full termination”). While a termination proof in this setting is correct also for call-by-value
evaluation, some proof methods that are sound for call-by-value or innermost evaluation are
not applicable to full termination. Specifically, the analysis of open-world termination [13] –
intuitively, termination of a set of rules also in the context of an arbitrary program known to
be terminating on its own – is limited in power: The reduction pair processor [11, 12, 15] as
the workhorse for termination proofs in the DP framework would be unsound.

In this extended abstract, we sketch an adaptation of the DP framework to proving call-
by-value and innermost termination of LCSTRSs. We assume familiarity with term rewriting
(see, e.g., [2]) and with the DP framework [11, 12, 15]. We use an informal presentation
style for the introduced concepts, deliberately eliding some technical details. For formal
definitions, theorems, proofs, as well as a discussion of experiments and related work, we
refer to the full version of the paper published at FSCD 2025 [5].

2 Background

In this section, we recapitulate LCSTRSs [14] with the help of examples.
LCSTRSs are essentially an extension of (first-order) Logically Constrained Term Rewriting

Systems (LCTRSs) [16] to a higher-order setting (without λ-abstractions). All variables and
function symbols in an LCSTRS are typed, using curried simple types. The sorts underlying
the type systems used for LCSTRSs represent either user-defined algebraic data types (as for
many-sorted classic term rewriting) or pre-defined theory types such as integers or bitvectors
taken from a logical theory (in the sense of SMT). The former correspond to user-defined
data types in a programming language, and the latter represent primitive types as provided
by many practically used programming languages. Types are then constructed inductively
using a binary arrow constructor, which also allows for higher types for function arguments.

I Example 1. Consider the function declarations gcdlist : intlist → int, fold : (int → int →
int) → int → intlist → int and gcd : int → int → int. Here int is a theory type from integer
arithmetic, whereas intlist is a user-defined data type with constructors nil : intlist and
cons : int→ intlist→ intlist. For our examples, we use integer arithmetic as the background



C. Fuhs, L. Guo, and C. Kop 3

theory, so we include all values from Z and the boolean values t and f as constructors, as well
as standard arithmetic operations (+,−, . . .), in the underlying signature of our LCSTRS.

We can now define the constrained rewrite rules of an LCSTRS R to compute the greatest
common divisor of a list of integers, where we omit constraints of the form [t]:

gcdlist→ fold gcd 0 fold f y nil→ y fold f y (cons x l)→ f x (fold f y l)
gcd m n → gcd (−m) n [m < 0] gcd m 0→ m [m ≥ 0]
gcd m n → gcd m (−n) [n < 0] gcd m n → gcd n (m mod n) [m ≥ 0 ∧ n > 0]

To see how an LCSTRS works, consider the following example evaluation, where the
used redex is underlined: gcdlist (cons (1 + 1) nil) →R fold gcd 0 (cons (1 + 1) nil) →R
gcd (1 + 1) (fold gcd 0 nil) →R gcd (1 + 1) 0 →R gcd 2 0 →R 2. The fourth step is a
calculation step: (1 + 1)→R 2. In the last step, 2 ≥ 0 holds, and we use the top-right gcd
rule. Note that this evaluation is neither a call-by-value evaluation (“ v−→”: proper subterms
of the used redex must be values; in our setting, constructor ground terms) nor an innermost
evaluation (“ i−→”: proper subterms of the used redex must be in normal form). The reason is
that in the second step, we did not rewrite the innermost redex (1 + 1), which is not a value.

The following is an evaluation sequence that is both call-by-value and thus also innermost:
gcdlist (cons (1 + 1) nil) v−→R fold gcd 0 (cons (1 + 1) nil) v−→R fold gcd 0 (cons 2 nil) v−→R

gcd 2 (fold gcd 0 nil) v−→R gcd 2 0 v−→R 2. Note that in the first step, (1 + 1) is not a
subterm of the used redex.

I Example 2. To see the difference between call-by-value and innermost rewriting, consider
the LCSTRS R = {hd (cons x l)→ x, tl (cons x l)→ l}. Then hd (cons 42 (tl nil)) i−→R 42
is innermost but not call-by-value. The reason is that the subterm tl nil of the redex is in
normal form, but not a value: Innermost rewriting lets us rewrite above function calls that
are “stuck” on their arguments; in OCaml, the computation would abort with an error.

I Example 3 (Ex. 1 continued). Our goal is to prove that call-by-value evaluation with R
from Ex. 1 is terminating. However, termination of innermost rewriting, which is slightly
more permissive than call-by-value evaluation, is more commonly considered in the term
rewriting community and has been studied extensively for first-order term rewriting. Rather
than reinvent the wheel, we formulate our techniques for innermost rewriting and provide a
transformation to carry over (some) information about the intended call-by-value strategy.

The idea of the transformation is that in practice we may consider theory sorts to be
inextensible: programmers are not allowed to add new constructors to pre-defined types like
int. So we are interested only in instantiations of variables of inextensible theory types like
int by their theory values. Now, for LCSTRSs, variables occurring in the constraint of a
rule may be instantiated only by theory values during matching (and not, e.g., by normal
forms that result from a function call “getting stuck”, analogous to Ex. 2). Thus, we add
variables of inextensible theory sorts in rewrite rules to their constraints, writing ϕ, x1, . . . , xn

for ϕ ∧ x1 ≡ x1 ∧ · · · ∧ xn ≡ xn. The operation ≡ corresponds to semantic equality in the
underlying theory, so the only effect is to prevent undesired variable instantiation by non-
values. For R, the transformation adds variables to the constraints of four rules, where
variables are added to a constraint only if they do not already occur there, e.g., n < 0 in the
bottom-right rule already enforces that n may be instantiated only by values from Z:

fold f y nil→ y [t, y] gcd m n→ gcd (−m) n [m < 0, n]
fold f y (cons x l)→ f x (fold f y l) [t, x, y] gcd m n→ gcd m (−n) [n < 0,m]

We will refer to the result of the transformation as Rgcd, and our goal will be to prove
innermost termination of this LCSTRS.
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Note that this approach of restricting innermost evaluation to call-by-value evaluation
affects only variables of theory sorts like int. As terms of non-theory types like intlist are
not allowed to occur in constraints of LCSTRS rules, the variable l in the bottom-left rule
cannot be added to the constraint. This means that a term like fold gcd 0 (cons 1 (tl nil)) can
still be rewritten innermost using the bottom-left rule, even though this rewrite step is not
call-by-value. Still, innermost termination of the LCSTRS produced by the transformation
implies call-by-value termination of the input LCSTRS (but in general not vice versa).

3 Dependency Pairs for Innermost Termination of LCSTRSs

DPs [1] are a standard technique for proving termination of term rewriting systems. Static
DPs (SDPs) [18, 19, 17, 6] are a common adaptation of DPs to the higher-order setting. While
SDPs have soundness requirements based on computability (see, e.g., [6] for a discussion),
SDPs tend to be applicable to LCSTRSs corresponding to real-world programs.

I Example 4 (Ex. 3 cont’d). The set SDP(Rgcd) of SDPs for Rgcd consists of these SDPs:
(1) gcdlist] l′ ⇒ gcd] m′ n′

(2) gcdlist] l′ ⇒ fold] gcd 0 l′
(3) gcd] m n⇒ gcd] (−m) n [m < 0, n]

(4) gcd] m n⇒ gcd] m (−n) [n < 0,m]
(5) gcd] m n⇒ gcd] n (m mod n) [m≥0∧n>0]
(6) fold] f y (cons x l)⇒ fold] f y l [t, x, y]

As usual in the DP setting, “]” marks head symbols of potentially non-terminating
function calls. Note that rules are implicitly flattened for the calculation of DPs so that
variables are added as arguments until the rules have base type; hence the extra argument l′
in the left-hand side of DP (1) and in both sides of DP (2). In contrast to the first-order
setting, the right-hand side of a DP may contain variables that do not occur in the left-hand
side, such as m′ and n′ in DP (1). The reason is that in the corresponding rewrite rule, the
defined symbol gcd occurs in the right-hand side with fewer arguments than required for a
step using a gcd-rule. At this point we do not know to which arguments gcd may eventually
be applied. This is why we introduce fresh variables for the missing arguments, which in an
innermost DP chain are instantiated by arbitrary (well-typed) normal forms. As we do not
use SDPs to prove non-termination, correctness is not affected.

Our proof obligations are called DP problems, pairs (P,R) with P a set of DPs and R a
set of rewrite rules. The initial DP problem for Rgcd is (SDP(Rgcd),Rgcd). We must prove
absence of infinite (P,R)-chains, analogously to the unconstrained first-order setting. For a
DP problem (∅,R), this holds trivially. As in the first-order innermost DP framework [11, 22],
we keep track of the rewrite rules of the initial DP problem in a set Q to have a faithful
representation of the rewrite strategy (both components of a DP problem may be modified).

Proof techniques to simplify and decompose DP problems towards reaching DP problems
of the shape (∅,R) are called DP processors. Many standard DP processors for (constrained
and unconstrained) term rewriting can be adapted to the setting of full termination of
LCSTRSs [13] and carry over to our innermost setting. These include the Dependency
Graph processor, which decomposes the dependency graph of potentially consecutive DPs in
a chain into its non-trivial strongly connected components (roughly: splits the call graph
into mutually recursive calls, deletes other DPs), the subterm criterion and integer mappings
(both delete DPs that make arguments smaller). These processors already suffice to prove
innermost termination of Rgcd (see [5] for details).

In the innermost setting, we can provide further processors that are practically relevant
for program analysis. Rewrite systems that were obtained from an automatic translation by
a frontend tend to contain many rewrite rules that make only small changes to the program
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state – each instruction is translated separately. Thus, information that is needed for making
progress in a termination proof may be spread over different rewrite rules or DPs.

I Example 5. Consider the below imperative program [7] (here in a Python-like syntax) on
the left and the set P of SDPs generated from this program on the right:

def fact(x):
z = 1 # fact
i = 1 # u1
while i <= x: # u2

z = z * i # u3
i = i + 1 # u4

# u5

fact] x ⇒ u]
1 x 1 [t, x]

u]
1 x z ⇒ u]

2 x z 1 [t, x, z]
u]

2 x z i⇒ u]
3 x z i [i ≤ x, z]

u]
3 x z i⇒ u]

4 x (z ∗ i) i [t, x, z, i]
u]

2 x z i⇒ u]
5 x z [¬(i ≤ x), z]

u]
4 x z i⇒ u]

2 x z (i+ 1) [t, x, z, i]
The only loop in the control-flow graph of the imperative program goes from program

point u2 via u3 and u4 back to u2. Intuitively, the loop terminates because each time the
instruction i = i + 1 at program point u4 is executed, the value of i gets one step closer
to the (constant) value of x, which is checked at program point u2. This means that the
value of x - i decreases against the bound 0 in each iteration of the loop.

Unfortunately, the above set of DPs does not have the information “decrease” and “against
a bound” together in a single DP. Processors like the integer mapping processor or standard
reduction pair processors generally need to identify a decrease against a bound within the
same DP. This is where chaining processors come to the rescue. They allow for merging
consecutive DPs such that the resulting DPs carry out the operations of both original DPs.

In our example, chaining processors can iteratively remove the occurrences of u]
1, u]

3 and
u]

4, and end with (1) fact] x ⇒ u]
2 x 1 1 [t, x], (2) u]

2 x z i ⇒ u]
2 x (z ∗ i) (i+ 1) [i ≤ x, z],

and (3) u]
2 x z i⇒ u]

5 x z [¬(i ≤ x), z]. Now both the increase of i and the bound i ≤ x are
represented in the single DP (2), and termination is easily proved using an integer mapping
corresponding to our intuition from the imperative program.

Chaining processors occur in earlier work on constrained rewriting, e.g., for PA-based
TRSs [4] and for int-TRSs [8], which both correspond to constrained DPs with constraints
over the integers and without nested function calls. Our chaining processor for the DP
framework for LCSTRSs does not have the restriction on nested function calls.

Similar to chaining, also DP processors for DP transformations [1, 11, 12, 22] from the
first-order DP framework modify the DPs themselves. Narrowing and rewriting require
defined symbols from R below the root of a right-hand side of a DP, so they would not be
applicable in our example. A future adaptation of (forward) instantiation to the constrained
setting should be able to propagate constraints between consecutive DPs, although it would
not reduce the number of DPs like the chaining processor.

Further processors for the innermost DP framework for LCSTRSs include the usable rules
processor, which deletes all rules from R that are not called directly or indirectly from a DP,
and the reduction pair processor using argument filterings for temporary removal of higher-
order arguments to make reduction pair processors from the first-order world applicable
(deletes DPs that make arguments smaller, can also handle arguments with function calls
inside DPs). These processors are applicable even for compositional open-world termination
analysis, where our LCSTRS is just a part of a larger (and growing) code base.

4 Conclusion

We have given an introduction to call-by-value and innermost evaluation using LCSTRSs,
and we have sketched a framework for proving innermost termination of LCSTRSs using
Dependency Pairs. For further details, please consider the full version of the paper [5].
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