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—— Abstract
In this article we discuss the application of termination provers to the decidability of the word
problem for 1-relation monoids. In particular, we describe how Adian’s algorithm 2 for a particular
left cycle-free 2-generated 1-relation monoid M can be used to produce a string rewriting system
whose termination implies that the word problem for M is decidable. Such monoids are among
the only cases of 1-relation monoids where it is not known whether or not the word problem is
decidable. Our findings show that this new class of SRS is not only theoretically significant, but is
also challenging for existing termination provers.
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1 Introduction

The decidability of the word problem for 1-relation monoids (WP1M) has been one of the
most prominent open problems in combinatorial algebra for at least the past 100 years.

If A is a non-empty set, then the set A* consists of the finite (possibly empty) sequences
of elements of A, we write € for the empty sequence and AT = A* \ {€}. The set A is
called an alphabet, its elements are letters, and elements of A* are words. The set A* is a
monoid (called the free monoid) when endowed with the binary operation of juxtaposition. A
monoid presentation is a pair (A | R) for some non-empty set A and some set R C A* x A*.
For example, (a,b | baaba = a) is a monoid presentation (omitting superfluous brackets).
Formally, a presentation defines the quotient monoid of A* by the least congruence containing
R. Informally, we may think of such a monoid M as consisting of words in A where two
words u,v € A* represent the same element of M, written u <} v, if there is a sequence of
relations in R transforming u to v. For example, in the presentation given above

baab <% ba(baaba)b = ba(baab)ab <% - - - <% (ba)*baab(ab)®, k> 0.

If A and R are both finite, then the monoid defined by (A | R) is finitely presented.
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The word problem for a monoid M defined by a presentation (A | R) is the decision
problem with input u,v € A*, that outputs “yes” if the words u and v represent the same
element in M and “no” if they do not. The word problem for monoids is undecidable in
general. The literature is replete with the search for minimal examples, in one sense or
another, of finitely presented monoids with undecidable word problem. If “minimal” means
“with the fewest possible relations”, then the best example to date is that given in [7] of a
2-generator and 3-relation presentation defining a monoid with undecidable word problem.
On the other hand, the word problem for groups defined by (group) presentations with 1
relation were shown to be decidable by Magnus [6]. Although intensively studied for many
decades, the question of whether or not there exists a monoid defined by a 1- or 2-relation
presentation with undecidable word problem is open.

Recently there has been something of a renaissance in interest in the decidability of the
WP1M; see [9] and the references therein for more details. Despite, or perhaps precisely due
to, the wide variety of results proving decidability of the WP1M for various subclasses of
1-relation monoid presentations, there is no simple answer to the seemingly obvious question:

what is the smallest known instance of a 1-relation monoid presentation where the
decidability of its word problem is unknown?

This question motivated the authors of the current paper to explore to what extent, and
by what means, the word problem for 1-relation monoids can be solved using existing
computational tools and known mathematical results. In order to make our findings easily
accessible and reproducible, we are in the process of collating our computational findings into
a database containing formal ROCQ [12] proofs of decidability, which we intend to distribute
as part of an accompanying website, the “Online Encyclopedia of 1-relation Monoids”.

Adian and Oganesian [1] proved that the word problem is decidable for all 1-relation
monoids if it is decidable for all presentations of the form:

(a,b | bua = ava) or {(a,b|bua=a) (1)

for some u,v € {a,b}*. In particular, given any l-relation monoid M it is straightforward to
construct a presentation of the form given in (1) defining a monoid M’ with the property
that if the word problem is decidable for M’, then it is decidable for M also. So, from this
point on we will restrict our attention to presentations of the form given in (1).

An overwhelming majority of instances of the WP1M that we have considered were
readily tackled by known mathematical results or the Knuth-Bendix algorithm [5]. For other,
more difficult instances, however, we were able to reduce the WP1M instance to an instance
of the string rewriting system (SRS) termination problem, some of which we could solve
using termination provers such as matchbox [13] and MultumNonMulta [4]. The aim of this
paper is: to describe how we constructed SRS termination instances from the WP1M; and
to provide some examples.

2 A rewriting system formulation of Adian’s algorithm

A monoid defined by a 2-generator 1-relation presentation P = (a,b | u = v) satisfies the left
cycle-free condition if and only if P is in one of the forms given in (1), see [9, Section 2.2]. The
relations words of P are the words v and v. As a consequence of the left cycle-free condition,
every word w € {a, b}+ has a unique factorization w = pyps - - - p,ht where n > 0, each
p; € {a, b}Jr is a proper and non-empty prefix of either u or v, h € {u,v,e} and t € {a,b}"
are such that:
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(i) for each 4, if p’ is a longer (possibly improper) prefix of the same relation word as p;,
then py - -+ p;_1p’ is not a prefix of w,
(i) h # € if and only if p; ---p, # w and there does not exist a proper and non-empty
prefix of a relation word p’ such that p; ---p,p’ is a prefix of w.
We call this factorization the prefix decomposition of w, the factor h is called the head of
the decomposition. If h = & we call the prefix decomposition headless. We denote the prefix
decomposition visually by separating the factors with bars | and highlighting the head in
bold, if it is present. For example, with respect to the presentation (a,b|baabbaa = aba),
the word babbaababaabbaa has the prefix decomposition ba|blbaablabalabbaa with head aba.
The word abbaabab has the prefix decomposition ab|baablab, which is headless.
Adian’s algorithm 2 for a left cycle-free presentation P = (a,b | u = v) takes as input a
letter € {a,b} and a word w € {a,b}" and proceeds as follows:
1. If the first letter of w is x or if the prefix decomposition of w is headless, then return w;
2. If the head of the prefix decomposition of w equals u, then replace the head by v in w
and go to step 1;
3. If the head of the prefix decomposition of w equals v, then replace the head by u in w
and go to step 1.
For example, a run of Adian’s algorithm for the presentation (a,b|baabbaa = aba) with input
r = a, w = bbaabbabaababa produces the following sequence of prefix decompositions:

b|baabbalbaablaba — blbaabba|baabbaalbbaa — b|baabbaalbabbaa — ba|ba|balb|baa

hence the 2((a, bbaabbabaababa) = babababbaa.

Note that Adian’s algorithm does not necessarily terminate on all inputs, e.g. in the
monoid given by the presentation (a,b|baabbaa = a), running A(a, bbaaa) results in the
following sequence of rewrites:

blbaala — blbaablalabbaa — b/baabbaalbbaaabbaa — ba|b|baala|bbaa — - - -

The decomposition ba|b|baa|albbaa contains the decomposition |b|baalal of the initial word,
hence A(a, bbaaa) will not terminate. In fact, understanding termination of Adian’s algorithm
leads to a solution of the word problem for the monoid defined by the underlying presentation.

» Theorem 1 (c.f. [9, Theorem 4.3]). Let P be a 2-generated 1-relation left cycle-free
presentation. If there is an algorithm which, given x € {a,b} and w € {a, b}+, decides

whether or not A(x,w) terminates, then the word problem for the monoid defined by P is
decidable.

When Adian’s algorithm terminates on all inputs we get Corollary 2, which has been used
in several articles to prove the decidability of the word problem for subclasses of 1-relation
monoids, see [9, Section 4.3].

» Corollary 2. Let P be a 2-generated 1-relation left cycle-free presentation. If Adian’s
algorithm terminates on all inputs, then the word problem in the monoid defined by P is
decidable.

The analysis of termination of Adian’s algorithm is complicated somewhat by its descrip-
tion. Despite being written as a general algorithm, it only consists of repeated rewrites
on a word depending on the prefix decomposition. Furthermore, the process of prefix de-
composition itself can be formulated as a rewriting system, which produces an ever longer
factorization until it either finds a head or factorizes the whole word. In order to broaden
the termination proving methods available to us, we use these observations to produce, for
every cycle-free presentation P, a string rewriting system Ap for which Theorem 3 holds.
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» Theorem 3. Let P be a left cycle-free presentation. Then Ap is terminating if and only
if A terminates on all inputs.

We will only describe our construction as it applies to 2-generated 1-relation left cycle-free
presentation, the general construction which applies for all left cycle-free presentation is
given in Appendix A. A similar construction has been considered in [2].

» Definition 4. Let P = (a,b|u = v) be a left cycle-free presentation and let
P={ac{a,b}t:36€{a,b}" st apc {u,v}}

be the set of all non-empty prefizes of relation words (including w and v themselves). Let
B ={q, : p € P} be a set of symbols disjoint from {a,b} and let

B={q7 = qp: : p € P,x € {a,b} s.t. px € P}
C={qpr = ¢pqs : p € P,x € {a,b} s.t. p & {u,v} and px & P}
D = {qu — v,qy — u}.

Then Adian’s string rewriting system associated to P is the string rewriting system Ap on
{a,b} U B given by the union Ap = BUCUD.

The proof of Theorem 3 is rather technical and we won’t reproduce it here in full, but
we give some indication of its correctness. Let w € {a,b}", z € {a,b} and w’ € {a,b}" be
such that w = zw’. We claim that the rewriting system consisting of B U C when applied
to gzw’ computes the prefix decomposition of w. Indeed, after every application, the word
will be of the form g¢p,qp, ... ¢qp,t for some prefixes py,...,pr, € P and t € A* such that
w = p1 -+ - prt. Rules in B can be used to extend the rightmost prefix py in the factorization,
if this leads to a longer prefix, including either relation word u and v. Rules in B apply if the
rightmost prefix pg is not a whole relation word and the letter following py does not extend
it to a longer prefix. In this case, a new prefix starting at the following letter is added to the
factorization. If p; € {u, v}, then no rewrite rule from B U C applies and py, is the head of
the decomposition. Rules in D simulate the substitution of the head performed by Adian’s
algorithm. Let y € {a,b} \ {z}. Then it follows that the output of 2(y,w) terminates if and
only if Ap terminates when applied to ¢, w’, and the result of 2(y, w) can be recovered from
the resulting word. This is justification for the forward implication of Theorem 3. The reverse
implication follows with some extra work from the fact that the rules in Ap all commute.

» Example 5. Let P = (a,b | baabaa = aba). Then the associated Adian’s SRS is Ap is as
follows:

da@ — Gaa; dab = qab, dab@ — qaba, qabb = qabqp,
@ = Gbas Wb — quqp, Qba® = Qbaas Qbad = qbaln,
Gbaa@ = Gbaada; Qbaab = Gbaab, Gbaab® — Qbaaba; Qbaabb = Qbaabqn,
Qbaaba® — Gbaabaas  Gbaabab = Qvaabadb, Jaba — baabaa,  qvaabaa —> aba.

The SRS Ap is terminating, which can be established e.g. with the help of the matchbox
termination prover. It follows that the monoid defined by the presentation P = (a,b |
baabaa = aba) has decidable word problem.
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Method Count
Known mathematical results 222786
Knuth-Bendix 37624
Knuth-Bendix backtrack 502
Adian’s SRS terminates (certified) 460
Adian’s SRS terminates (no certificate) 135
Unsolved (Adian’s SRS non-terminating) 75
Unsolved (Other) 50
Total 261632

Table 1 Distribution of solutions to the word problem by the method used for monoids defined
by a left cycle-free 2-generated 1-relation presentation P = (a,b | u = v), where |u|, |[v| < 10. See
Section 3 for more details.

3 Results

We attempted to solve the word problem for all monoids defined by a left cycle-free 2-
generated 1-relation presentation P = (a,b | v = v), where |u|, |v| < 10. The only previous
published attempt at doing so appears in [10] for presentations with |ul, |[v] < 6. The results
of our efforts are collected in Table 1. The rows of the table are as follows:
“Known mathematical results” refers to presentations which are resolved by results
described in [9, Section 2, Section 4.3 and Section 5.3] and generally involves criteria on
the presentation which can be checked in polynomial time.
“Knuth-Bendix” refers to presentations for which we could find complete rewriting systems
using the Knuth-Bendix algorithm as it is implemented in libsemigroups [8]. The rewriting
systems were obtained by exhaustively checking all possible shortlex orderings, as well as
subword substitutions via Tietze transformations of depth up to 5.
“Knuth-Bendix backtrack” refers to presentations for which complete rewriting systems
could be found using a variation of the Knuth-Bendix algorithm which explores all possible
word orderings in a backtracking fashion, akin to [15, 14]. This process produces a locally
confluent SRS, whose termination we prove using the matchbox termination prover.
“Adian’s SRS terminates (certified)” refers to presentations for which a proof and CPF [11]
certificate of termination of Adian’s SRS was found using matchbox.
“Adian’s SRS terminates (no certificate)” refers to presentations for which a proof of
termination of Adian’s SRS was found using either matchbox or MultumNonMulta, but no
CPF certificate of termination could be produced. This is mainly because RFC-based [3]
proof methods cannot be certified at the moment.
“Unsolved (Adian’s SRS non-terminating)” refers to presentations for which we did not
find a solution to the word problem, but for which a proof of non-termination of Adian’s
SRS was found by either matchbox or MultumNonMulta.
“Unsolved (Other)” refers to presentations for which we did not find a solution and we do
not know whether Adian’s SRS terminates on all inputs.

Our results highlight the utility of termination provers for solving the WP1M and the
difficulty of proving and certifying termination of the Adian’s SRS instances arising from
Adian’s algorithm. We intend to make the SRS instances arising from Adian’s algorithm
publicly available by adding them to the Termination Problems Data Base (https://
termination-portal.org/wiki/TPDB).
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A  The construction for general left cycle-free presentations

During our experimentation we found that making certain substitutions to a left cycle-free
presentation which increase then number of relations, but keep the presentation left cycle-free
could sometimes lead to string rewriting systems which were easier to prove termination of.
Similar phenomena for the Knuth-Bendix procedure are well known. In order to apply such
transformations, however, we need to use a slightly more general construction than the one
given in Definition 4. We do so in this appendix.

For a set X we define the symmetric closure of a relation R C X x X to be RSY™ =
RU{(B,a) : (a, B) € R}. For a partial function f, we write f(x) = L to indicate that f is
not defined on input z. For a non-empty word w € A" we will denote the first letter of w by
first(w) € A and write tail(w) for the remainder after removing the first letter, so that
w = first(w)tail(w). Let M be a monoid defined by the presentation P = (A | R). We
assume that that o, 8 € AT are non-empty for all relations (a, 3) € R.

We define L(M), the left graph of M with respect to P, to be the undirected multigraph
with vertex set A and an edge between letters a,b € A for every occurrence (o, 8) € R such
that a = first(a) and b = first(5). We say that the monoid M is left cycle-free if L(M)
is acyclic with respect to some presentation P.

Note that in a left cycle-free monoid, for every pair of adjacent letters a,b in L(M) we
can find a unique relation (o, 3) € R%™ such that a = first(a) and b = first(f). With
this in mind, we define the partial functions o,7 : A x A — AT as follows. Given a,b € A,

if a = b or a and b are not not connected in the graph £(M), then let o(a,b) = 7(a,b) = L;

if @ # b are adjacent in £(M) then let o(a,b) = a and 7(a,b) = B where (o, 3) € RSY™ is

the unique relation such that a = first(a) and b = first(5);

if a # b are connected but not adjacent in L(M), then let o(a,b) = o(a,vs) and

7(a,b) = 7(a,v2), where a = v1,va,...,v, = b is the unique path connecting a,b in L(M).

Note that vy # b as a, b are not adjacent.

It follows from the construction that (o(a,b),7(a,b)) € RSY™ is a relation whenever o(a,b)
and 7(a,b) are defined. Note also that first(o(a,b)) = a whenever o(a,b) # L.

» Definition 6. Let P = (A | R) be a left cycle-free presentation defining a monoid M. For
every pair (a,b) € Ax A let Py = {o € AT : 36 € A* s.t. aff = o(a,b)} be the set of
non-empty prefizes of o(a,b). Let B be set disjoint from A given by

B={qup Va,b€ AU | A{d@a @€ Poal
(a,b)EAX A

and let
Tar = {q(ae) =~ a:a € A}
By = {Q(a,v)b AR RED be A;’Y € A+a7a7b € P(first('y)7a)}
CM = {q(a,'y)b — d(a,v)49(c,b) * @5 ba cE A7 S A+7 Y, ¢ € P(first('y),a)a ’7b ¢ P(first(’y),a)}
Dy = {Q(a,a(d,a)) — q(a,first(‘r(d,a)))taiz’(’r(da a)) : a7d € Aa de A+a U(d7 CL) 7£ J-}

The Adian rewriting system is the rewriting system on C = AU B given by the union
Ap =T UBUCUD.

Theorem 3 holds for Ap given by Definition 6.
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