Non-Termination of Term Rewrite Systems Using
Pattern Unfolding

Etienne Payet =4
LIM - Université de la Réunion, France

—— Abstract

We present a revisit, based on a new unfolding technique, of an approach introduced in term rewriting
for the automatic detection of infinite non-looping derivations from patterns of rules.

2012 ACM Subject Classification Theory of computation — Rewrite systems; Theory of computation
— Program analysis

Keywords and phrases Non-Termination, Non-Looping, Unfolding, Term Rewriting

1 Introduction

A derivation w.r.t. a term rewrite system (TRS) is called non-looping if it does not contain
any loop, i.e., any finite rewrite sequence where an instance of the starting term re-occurs as
a subterm of the last term. In this paper, we present a work in progress on the automatic
detection of infinite non-looping derivations w.r.t. a given TRS. We describe a reformulation
of the approach of [2]: our contribution is the replacement of the nine inference rules of [2]
for producing pattern rules, together with the strategy for their automated application, by a
new unfolding technique. All we can say at the moment is that it provides a more compact
presentation than that of [2], but we still need to compare the two approaches more precisely.

2 Preliminaries

N denotes the set of natural numbers. For all binary relations = on a set A, a =-chain is a
(possibly infinite) sequence ag = a; = --- and =1 (resp. =*) denotes the transitive (resp.
reflexive and transitive) closure of =.

2.1 Terms

We use the same definitions as [1] for terms. From now on, we fix a signature ¥ and a set
H = {0, | n €N\ {0}} of constant symbols (called holes) disjoint from 3. We also fix an
infinite countable set X of variables disjoint from XU H. We let S(X, X) denote the set of all
substitutions from X to T'(X, X). We let mgu(s,t) denote the set of most general unifiers of
the terms (or sequences of terms) s and t. We denote function symbols by words in the sans
serif font, e.g., f, 0, while... We use the superscript notation to denote several successive
applications of a unary function symbol, e.g., s?(0) stands for s(s(0)) and s"(0) = 0.

Let n be a positive integer. An n-context is an element of T(X U H, X) that contains
occurrences of [y, ..., O, but no occurrence of another hole. For all n-contexts ¢ and all
S1y--,8, ET(XUH,X), we let ¢(s1, - ,8,) denote the element of T(X U H, X) obtained
from ¢ by replacing all the occurrences of [J; by s;, for all 1 < ¢ < n. We use the superscript
notation for denoting several successive embeddings of a 1-context c into itself: ¢® = [J; and,
for all n € N, ¢"*t! = ¢(¢"). For all n € N, we denote by x(™) the set of n-contexts that
contain exactly one occurrence of Oy, ..., ,.

mailto:etienne.payet@univ-reunion.fr
http://lim.univ-reunion.fr/staff/epayet/
https://orcid.org/0000-0002-3519-025X

Non-Termination of TRSs Using Pattern Unfolding

2.2 Term Rewriting

A rule is an element of T(X, X)? and a term rewrite system (TRS) is a set of rules. Given a
rule (u,v), we let [(u,v)] = {(uy,vy) | v is a renaming} denote its equivalence class modulo
renaming. Moreover, for all TRSs R, we let [R] = [J,cx[r]. The rules of a TRS allow one to
rewrite terms. This is formalised by the following binary relation —x.

» Definition 1. Let R be a TRS. We let g = J{—+ | r € R} where, for allr = (u,v) € R,
= = {(c(uf),c(vd)) e T(,X)* | cexV, 0 €S(E,X)}. A rule (u,v) is correct w.r.t.
R if u—ﬁzv holds. A TRS is correct w.r.t. R if all its rules are. We say that R is
non-terminating (or does not terminate) if there exists an infinite —x-chain.

A loop in a TRS R is a finite —g-chain of the form s—,, ---—, c(sf) where s €
T(Z,X), 71,...,7n € R, c € XV and 6 € S(X, X). Tt gives rise to an infinite —-chain
Sy o= (80) =y o=y c(cB(86%)) =, -+ . We say that a —g-chain is non-looping
if it does not contain any loop.

We unfold TRSs as follows. For the sake of readability, we write [(u,v) | ...] instead
of [{(u,v) | ...}]. Moreover, (r1,...,7,) <, [R] means that (r1,...,r,) is a sequence of
elements of [R] variable disjoint from r and from each other.

» Definition 2 (Unfolding). For all TRSs R and R, we let

r=(u,c(s1,...,8,)) ER, c€ x™
Ur(R) = | (ub,c(vy,...,v)0) | ((u1,v1),..., (tun,vp)) <, [R]
0 =mgu((s1,..-,8n), (U1,...,uy))

The unfolding of R from R is the set unf(R, R) = (Ur)*(R).

» Proposition 3. Let R and R be TRSs such that R is correct w.r.t. R. Then, for alln € N,
UR(R) is correct w.r.t. R, which implies that unf(R, R) also is.

» Example 4. Let R be the TRS which consists of the rules

r1 = (while(true, z, y), while(gt(z,y), add(z, y),s(y))) ra = (gt(s(z),s(y)). gt(z,y))
r2 = (gt(s(x),0), true) rs = (add(z,0),)

r3 = (gt(0,y), false) re = (add(z,s(y)),s(add(z,y)))
and which corresponds to the imperative program fragment
while (x >y) {x=x+y; y=y +1; }

Note that this fragment does not terminate if it is run from integers x,y such that x > y > 0.
Moreover, for all n > m > 0, we have the infinite —%-chain

while(true7 s” (0), s (0)) (S0l o 3o B 6) While(true, Sn+7n(0), gmtl (0))

1 T4 T2 Te 5
(so™ oo™ o).
T1 T4 T2 T6 Ts
It is non-looping because the number of applications of r4 and r¢ gradually increases. Let us
compute some elements of unf(R,R) by applying Def. 2.
We have 74 = (gt(s(x),s(y)), c(gt(z,y))) € R where ¢ = [0; € x"). Moreover, we have
(gt(s(z1),0), true) <, [R] and 6 = {z — s(21),y — 0} = mgu(gt(z,y), gt(s(z1),0)). So,
8 = (gt(s(x),s(y))0, c(true)d) € Ur(R) with & = (gt(s*(z1),5(0)), true).

E. Payet

More generally, for all n € N, [r&] C U (R) with 78 = (gt(s" ! (z),s"(0)), true).
Identically, from rg and 75 one gets: for all n € N, [r2dd] C UR(R) with r2dd =
(add(z,s™(0)),s™(z)).

Let n € N. From 7y, & and r2%¢ one gets: [r¥"le] C UZT!(R) where

rhile — (while(true, s" 1 (z),s™(0)), while(true, s>**1(z), s"T1(0)))

As R is correct w.r.t. R, UL (R) also is (Prop. 3), i.e., 7" also is. So, we have

while(true, s"*1(z),s"(0)) % while(true, s> +1(x),s"+1(0))
For all n > m > 0, we also have the infinite —,,¢(z r)-chain

while(true, s"(0),s™(0)) — while(true, s"T™(x1),s™1(0)) —

m+1

It is non-looping because a new rule (not occurring before) is used at each step.

3 Pattern Unfolding

Now, we describe a reformulation, based on unfolding, of the pattern approach of [2].

» Definition 5. A pattern substitution is a pair 8 = (o, 1) of elements of S(X, X). We rather
denote it as o x p. For alln € N, we let (n) = o™u. A pattern term is a pair p = (s,0)
where s € T(X,X) and 6 is a pattern substitution. We denote it as sx o x u if 6 = o % p.
For alln € N, we let p(n) = s8(n). For all s € T(X,X), we let s* = sx)« ().

For instance, if 0 = {& — s(z),y — s(y)} and p = {z — s(z),y — 0} then 0 = o+ is
a pattern substitution and p = gt(z,y) x 0 x p is a pattern term. For all n € N, we have
O(n) = o0"p = {z — " (2),y — s"(0)} and p(n) = gt(z,y)o"n = gt(s" "' (x),s"(0)).

From pattern terms one can define pattern rules.

» Definition 6. A pattern rule is a pair r = (p,q) of pattern terms. It describes the set
rules(r) = {(p(n),q(n)) | n € N} CT(Z, X)2.

» Example 7 (Ex. 4 continued). Let u = while(true, z,y) be the left-hand side of r1, o =
{z —s(z),y—s(y)}, o’ ={x—s(x)} and pp = {z — s(z),y — 0}. The pattern terms

p = uo x o * ;. = while(true,s(z),s(y)) o x i

q = uo? x o0’ x i = while(true, s*(x),s%(y)) * {x +— s*(x),y — s(y)} * p

respectively describe the sets of terms {p(n) = while (true,s"*%(z),s"*1(0)) | n € N} and
{a(n) = while (true,s**3(x),s"*2(0)) | n € N}. Moreover,

rules((p, q)) = { (while(true,s"**(x),s"*(0)), while(true,s*""(z),s"*2(0))) | n € N}
= {r¥Mle | n >0} C {rihile | n e N} C unf(R,R) (see Ex. 4)

We adapt the notion of correctness (Def. 1) to pattern rules (and we get the notion
defined in [2]).

» Definition 8. Let R be a TRS. A pattern rule r is correct w.r.t. R if rules(r) is. A set of
pattern rules is correct w.r.t. R if all its elements are.

Non-Termination of TRSs Using Pattern Unfolding

So, if a pattern rule (p,) is correct w.r.t. R then p(n) =% g(n) holds for all n € N. In Ex. 7,
we have rules((p,q)) C unf(R,R). As R is correct w.r.t. R, unf(R,R) also is (Prop. 3), i.e.,
(p, q) also is. So, while(s"2(x),s"*1(0)) —7 while(s>**3(z),s"*2(0)) holds for all n € N.

The next result allows one to infer correct pattern rules from a TRS. It considers pairs of
rules that have the same form as (rg,72), (r4,73) and (rg,75) in Ex. 4.

» Proposition 9. Suppose that a TRS R contains two rules r = (u,v), v’ = (u/,v') s.t.
u=clcr(x1),...,cm(@m)), v="C="(e(x1,...,Tm)), v =c(t1,...,tm),
Cly. -y Cm,C are 1-contexts and ¢ is an m-context with Var(ci,...,cm,c,c) =10,
Z1y...,Tm € X are distinct and t1,. .. t, € T(X, X).

Let o = {ap — cp(ag) | 1 <k <m} and p={zr — tr | 1 <k <m}. Then, the pattern rule

(c(1,. .. Tm) x 0% p,z1 * {wy = ¢ (z1)} * {21 — v'}) is correct w.r.t. R

» Example 10. In Ex. 4, we have r4 = (c(c1 (), c2(y)), ¢ (c(z,y))) and ro = (c(t1,t2), true)
for ¢ = gt(01,03), ¢1 = ca = s(y), ¢ = Oy, t1 = s(z) and t = 0. So, by Prop. 9,
(p1,q1) is correct w.r.t. R where p; = gt(x,y) *x {z — s(z),y — s(y)} x {zx — s(z),y — 0}
and q; = z x @ x {z — true}. Identically, from rg and 75 one gets: (ps,q2) is correct w.r.t. R
where py = add(z,y) * {y — s(y)} x {y — 0} and g2 = z x {z > s(z)} x 0.

Unification for pattern terms is not considered in [2]. As we need it in our development
(see Def. 13 below), we define it here.

» Definition 11. Let p and q be pattern terms and 6 be a pattern substitution. Then, 0 is a
unifier of p and ¢ if p(n)0(n) = q(n)0(n) for alln € N. Moreover, § is a most general unifier
(mgu) of p and q if O(n) € mgu(p(n),q(n)) for all n € N. We let mgu(p,q) be the set of all
mgu’s of p and q. All this is naturally extended to finite sequences of pattern terms.

In Sect. 2.2, we have defined the equivalence class of a rule modulo renaming. We also
need to adapt this concept to pattern rules.

» Definition 12. For all pattern rules r, we let [r] be the set of all pattern rules v’ such that
rules(r') C [rules(r)]. Moreover, for all sets of pattern rules R, we let [R] =, cglr].

Now, using the above concepts, we provide a counterpart of Def. 2 for pattern rules.
» Definition 13. For all TRSs R and all sets of pattern rules R, we let

r=(u,c(s1,...,8,)) ER, c€ x™
((p1,v1x 015 1), ..o, (P, Un * Op * in)) <o [R]
Ur(R) = |(p,a) | oxp€mgu((si*s....s,%),(p1,---.Pn))
o commutes with the o;s and p;s
p=u*xo*pand g =c(v,...,0p) k01 ...0n0 % i1 ... fhnfi

The pattern unfolding of R from R is the set patunf(R,R) = (U{{)*(R)
» Example 14 (Ex. 4 continued). Let R = {(p1,¢q1), (p2,¢2)} (see Ex. 10) and
Py = gt(w1,y1) % {z1 = s(z1), 91 = s(y1)} * {z1 = s(z1), 41 = 0}

¢y = x1 x D x {z1 — true}
Py = add(w2,y2) * {y2 + s(y2)} * {y2 — 0} gy = To * {2 — s(x2)} % 0

Then, we have ((p},q}), (Ph, ¢5)) <y, [R] where r; = (while(true, z,y), c(gt(z, y), add(x, y)))
for ¢ = while(Oy,02,5(y)) € x?. Moreover, pxv € mgu ((gt(z,y)*, add(z,y)*) , (9}, 1))

E. Payet

where p = {z — s(z), y = s(y), z2 — s(z2)} and v = {z — s(z1), y — 0, 22 —
s(z1)}. We note that p commutes with the substitutions of ¢} and ¢}. So, r"hile =
(while(true, z,y) * p * v, c(x1,22) % p' x V') € UZ(R) where p/ = 0{zg > s(za)}p = {z —
s(z), y— s(y), xo > s?(x9)} and v/ = {z1 > true}fv = v U {z; — true}.

The following result corresponds to the Soundness Thm. 7 of [2].

» Theorem 15. Let R be a TRS and R be a set of pattern rules. If R is correct w.r.t. R
then patunf(R, R) also is.

Non-termination can be detected from a pattern rule using the following criterion.

» Theorem 16 (Thm. 8 of [2]). Let (s* 05 * s, t * 01 % j11) be correct w.r.t. a TRS R and
let there be an m € N such that o = o0’ and pup = psp’ for some o', ' € S(2, X), where
o' commutes with o5 and ps. If there is a m € Pos(t) and some b € N such that so° = t|,,
then solus starts an infinite (possibly non-looping) —x-chain for all n € N.

We note that the infinite chain of Thm. 16 may contain a loop (e.g., if m =1 and b = 0).
But, as the following example illustrates, this is not always the case.

» Example 17 (Ex. 7 and Ex. 14 continued). Let us regard the pattern rule (p, q) of Ex. 7.
As rules((p,q)) C {r¥hile | n € N} C [rWhile | n € N] = [rules(r""®)] (see Ex. 14), we have
(p,q) € [r""'] by Def. 12. So, as [r""'¢] C patunf(R, R), we have (p,q) € patunf(R,R).
Moreover, as R is correct w.r.t. R (by Prop. 9), patunf(R, R) is correct w.r.t. R (by Thm. 15).
So, (p,q) is correct w.r.t. R. On the other hand, (p,q) = (uo x o * p,uc? x oo’ x 1) (see
Ex. 7) and ¢’ commutes with o and . Hence, by Thm. 16, for all n € N the term
p(n) = uoo™p = uo™ 1y = while(true,s"2(x),s"*1(0)) starts an infinite —z-chain. This
implies that for all n > m > 0, while(true,s™(0),s™(0)) starts an infinite —g-chain (Ex. 4).

4 Conclusion

We have presented a work in progress on the detection of infinite non-looping chains in TRSs.
There are still many tasks to be completed. We have to implement our approach and to
compare it with that of [2]: for the moment, we simply observed that it is a reformulation of [2],
but we have to investigate further. Note that we already implemented a similar approach in
logic programming [6] and that we tested it on logic programs obtained by translating TRSs
introduced by the authors of [2] to evaluate their work. Our experiments suggest that our
approach and that of [2] are not orthogonal and do not completely overlap. We also have to
compare our work with other techniques for detecting non-looping chains [3, 4, 5].

—— References

1 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

2 F. Emmes, T. Enger, and J. Giesl. Proving non-looping non-termination automatically. In
Proc. IJCAR’12, volume 7364 of LNCS, pages 225-240. Springer, 2012.

3 J. Endrullis and H. Zantema. Proving non-termination by finite automata. In Proc. RTA’15,
volume 36 of LIPIcs, pages 160-176. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

4 M. Oppelt. Automatische Erkennung von Ableitungsmustern in nichtterminierenden Worter-
setzungssystemen. Diploma Thesis, HTWK Leipzig, Germany, 2008.

5 E. Payet. Non-termination in term rewriting and logic programming. Journal of Automated
Reasoning, 68(4):24 pages, 2024.

6 E. Payet. Non-termination of logic programs using patterns. To appear in Theory and Practice

of Logic Programming, 2025.

	1 Introduction
	2 Preliminaries
	2.1 Terms
	2.2 Term Rewriting

	3 Pattern Unfolding
	4 Conclusion

