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Abstract
We present a revisit, based on a new unfolding technique, of an approach introduced in term rewriting
for the automatic detection of infinite non-looping derivations from patterns of rules.
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1 Introduction

A derivation w.r.t. a term rewrite system (TRS) is called non-looping if it does not contain
any loop, i.e., any finite rewrite sequence where an instance of the starting term re-occurs as
a subterm of the last term. In this paper, we present a work in progress on the automatic
detection of infinite non-looping derivations w.r.t. a given TRS. We describe a reformulation
of the approach of [2]: our contribution is the replacement of the nine inference rules of [2]
for producing pattern rules, together with the strategy for their automated application, by a
new unfolding technique. All we can say at the moment is that it provides a more compact
presentation than that of [2], but we still need to compare the two approaches more precisely.

2 Preliminaries

N denotes the set of natural numbers. For all binary relations ⇒ on a set A, a ⇒-chain is a
(possibly infinite) sequence a0⇒ a1⇒· · · and ⇒+ (resp. ⇒∗) denotes the transitive (resp.
reflexive and transitive) closure of ⇒.

2.1 Terms

We use the same definitions as [1] for terms. From now on, we fix a signature Σ and a set
H = {�n | n ∈ N \ {0}} of constant symbols (called holes) disjoint from Σ. We also fix an
infinite countable set X of variables disjoint from Σ∪H. We let S(Σ, X) denote the set of all
substitutions from X to T (Σ, X). We let mgu(s, t) denote the set of most general unifiers of
the terms (or sequences of terms) s and t. We denote function symbols by words in the sans
serif font, e.g., f, 0, while. . .We use the superscript notation to denote several successive
applications of a unary function symbol, e.g., s2(0) stands for s(s(0)) and s0(0) = 0.

Let n be a positive integer. An n-context is an element of T (Σ ∪H,X) that contains
occurrences of �1, . . . , �n but no occurrence of another hole. For all n-contexts c and all
s1, . . . , sn ∈ T (Σ ∪H,X), we let c(s1, · · · , sn) denote the element of T (Σ ∪H,X) obtained
from c by replacing all the occurrences of �i by si, for all 1 ≤ i ≤ n. We use the superscript
notation for denoting several successive embeddings of a 1-context c into itself: c0 = �1 and,
for all n ∈ N, cn+1 = c(cn). For all n ∈ N, we denote by χ(n) the set of n-contexts that
contain exactly one occurrence of �1, . . . ,�n.
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2.2 Term Rewriting
A rule is an element of T (Σ, X)2 and a term rewrite system (TRS) is a set of rules. Given a
rule (u, v), we let [(u, v)] = {(uγ, vγ) | γ is a renaming} denote its equivalence class modulo
renaming. Moreover, for all TRSs R, we let [R] =

⋃
r∈R[r]. The rules of a TRS allow one to

rewrite terms. This is formalised by the following binary relation →R.

I Definition 1. Let R be a TRS. We let →R =
⋃
{→r | r ∈ R} where, for all r = (u, v) ∈ R,

→r =
{(
c(uθ), c(vθ)

)
∈ T (Σ, X)2

∣∣ c ∈ χ(1), θ ∈ S(Σ, X)
}
. A rule (u, v) is correct w.r.t.

R if u→+
R v holds. A TRS is correct w.r.t. R if all its rules are. We say that R is

non-terminating (or does not terminate) if there exists an infinite →R-chain.

A loop in a TRS R is a finite →R-chain of the form s→r1 · · ·→rn c(sθ) where s ∈
T (Σ, X), r1, . . . , rn ∈ R, c ∈ χ(1) and θ ∈ S(Σ, X). It gives rise to an infinite →R-chain
s→r1 · · ·→rn c(sθ)→r1 · · ·→rn c(cθ(sθ2))→r1 · · · . We say that a →R-chain is non-looping
if it does not contain any loop.

We unfold TRSs as follows. For the sake of readability, we write [(u, v) | . . . ] instead
of [{(u, v) | . . . }]. Moreover, (r1, . . . , rn) �r [R] means that (r1, . . . , rn) is a sequence of
elements of [R] variable disjoint from r and from each other.

I Definition 2 (Unfolding). For all TRSs R and R, we let

UR(R) =

(uθ, c(v1, . . . , vn)θ)

∣∣∣∣∣∣
r = (u, c(s1, . . . , sn)) ∈ R, c ∈ χ(n)

((u1, v1), . . . , (un, vn))�r [R]
θ = mgu((s1, . . . , sn) , (u1, . . . , un))


The unfolding of R from R is the set unf (R, R) = (UR)∗(R).

I Proposition 3. Let R and R be TRSs such that R is correct w.r.t. R. Then, for all n ∈ N,
UnR(R) is correct w.r.t. R, which implies that unf (R, R) also is.

I Example 4. Let R be the TRS which consists of the rules

r1 = (while(true, x, y),while(gt(x, y), add(x, y), s(y))) r4 = (gt(s(x), s(y)), gt(x, y))
r2 = (gt(s(x), 0), true) r5 = (add(x, 0), x)
r3 = (gt(0, y), false) r6 = (add(x, s(y)), s(add(x, y)))

and which corresponds to the imperative program fragment

while (x > y) { x = x + y; y = y + 1; }

Note that this fragment does not terminate if it is run from integers x, y such that x > y > 0.
Moreover, for all n > m > 0, we have the infinite →R-chain

while(true, sn(0), sm(0))
(
→
r1
◦ m→
r4
◦→
r2
◦ m→
r6
◦→
r5

)
while(true, sn+m(0), sm+1(0))(

→
r1
◦m+1→

r4
◦→
r2
◦m+1→

r6
◦→
r5

)
· · ·

It is non-looping because the number of applications of r4 and r6 gradually increases. Let us
compute some elements of unf (R,R) by applying Def. 2.

We have r4 = (gt(s(x), s(y)), c(gt(x, y))) ∈ R where c = �1 ∈ χ(1). Moreover, we have
(gt(s(x1), 0), true)�r4 [R] and θ = {x 7→ s(x1), y 7→ 0} = mgu(gt(x, y), gt(s(x1), 0)). So,
rgt

1 = (gt(s(x), s(y))θ, c(true)θ) ∈ UR(R) with rgt
1 = (gt(s2(x1), s(0)), true).



É. Payet 3

More generally, for all n ∈ N, [rgt
n ] ⊆ UnR(R) with rgt

n =
(
gt(sn+1(x), sn(0)), true

)
.

Identically, from r6 and r5 one gets: for all n ∈ N, [radd
n ] ⊆ UnR(R) with radd

n =
(add(x, sn(0)), sn(x)).
Let n ∈ N. From r1, rgt

n and radd
n one gets: [rwhile

n ] ⊆ Un+1
R (R) where

rwhile
n = (while(true, sn+1(x), sn(0)),while(true, s2n+1(x), sn+1(0)))

As R is correct w.r.t. R, Un+1
R (R) also is (Prop. 3), i.e., rwhile

n also is. So, we have

while(true, sn+1(x), sn(0)) +→
R

while(true, s2n+1(x), sn+1(0))

For all n > m > 0, we also have the infinite →unf (R,R)-chain

while(true, sn(0), sm(0)) →
rwhile

m

while(true, sn+m(x1), sm+1(0)) →
rwhile

m+1

· · ·

It is non-looping because a new rule (not occurring before) is used at each step.

3 Pattern Unfolding

Now, we describe a reformulation, based on unfolding, of the pattern approach of [2].

I Definition 5. A pattern substitution is a pair θ = (σ, µ) of elements of S(Σ, X). We rather
denote it as σ ? µ. For all n ∈ N, we let θ(n) = σnµ. A pattern term is a pair p = (s, θ)
where s ∈ T (Σ, X) and θ is a pattern substitution. We denote it as s ? σ ? µ if θ = σ ? µ.
For all n ∈ N, we let p(n) = sθ(n). For all s ∈ T (Σ, X), we let s? = s ? ∅ ? ∅.

For instance, if σ = {x 7→ s(x), y 7→ s(y)} and µ = {x 7→ s(x), y 7→ 0} then θ = σ ? µ is
a pattern substitution and p = gt(x, y) ? σ ? µ is a pattern term. For all n ∈ N, we have
θ(n) = σnµ = {x 7→ sn+1(x), y 7→ sn(0)} and p(n) = gt(x, y)σnµ = gt(sn+1(x), sn(0)).

From pattern terms one can define pattern rules.

I Definition 6. A pattern rule is a pair r = (p, q) of pattern terms. It describes the set
rules(r) = {(p(n), q(n)) | n ∈ N} ⊆ T (Σ, X)2.

I Example 7 (Ex. 4 continued). Let u = while(true, x, y) be the left-hand side of r1, σ =
{x 7→ s(x), y 7→ s(y)}, σ′ = {x 7→ s(x)} and µ = {x 7→ s(x), y 7→ 0}. The pattern terms

p = uσ ? σ ? µ = while(true, s(x), s(y)) ? σ ? µ
q = uσ2 ? σσ′ ? µ = while(true, s2(x), s2(y)) ? {x 7→ s2(x), y 7→ s(y)} ? µ

respectively describe the sets of terms
{
p(n) = while

(
true, sn+2(x), sn+1(0)

) ∣∣ n ∈ N
}
and{

q(n) = while
(
true, s2n+3(x), sn+2(0)

) ∣∣ n ∈ N
}
. Moreover,

rules((p, q)) =
{(

while(true, sn+2(x), sn+1(0)),while(true, s2n+3(x), sn+2(0))
) ∣∣ n ∈ N

}
=
{
rwhile
n | n > 0

}
⊆
{
rwhile
n | n ∈ N

}
⊆ unf (R,R) (see Ex. 4)

We adapt the notion of correctness (Def. 1) to pattern rules (and we get the notion
defined in [2]).

I Definition 8. Let R be a TRS. A pattern rule r is correct w.r.t. R if rules(r) is. A set of
pattern rules is correct w.r.t. R if all its elements are.
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So, if a pattern rule (p, q) is correct w.r.t. R then p(n)→+
R q(n) holds for all n ∈ N. In Ex. 7,

we have rules((p, q)) ⊆ unf (R,R). As R is correct w.r.t. R, unf (R,R) also is (Prop. 3), i.e.,
(p, q) also is. So, while(sn+2(x), sn+1(0))→+

R while(s2n+3(x), sn+2(0)) holds for all n ∈ N.
The next result allows one to infer correct pattern rules from a TRS. It considers pairs of

rules that have the same form as (r4, r2), (r4, r3) and (r6, r5) in Ex. 4.

I Proposition 9. Suppose that a TRS R contains two rules r = (u, v), r′ = (u′, v′) s.t.
u = c(c1(x1), . . . , cm(xm)), v = c′(c(x1, . . . , xm)), u′ = c(t1, . . . , tm),
c1, . . . , cm, c

′ are 1-contexts and c is an m-context with Var(c1, . . . , cm, c
′, c) = ∅,

x1, . . . , xm ∈ X are distinct and t1, . . . , tm ∈ T (Σ, X).
Let σ = {xk 7→ ck(xk) | 1 ≤ k ≤ m} and µ = {xk 7→ tk | 1 ≤ k ≤ m}. Then, the pattern rule(
c(x1, . . . , xm) ? σ ? µ, x1 ? {x1 7→ c′(x1)} ? {x1 7→ v′}

)
is correct w.r.t. R

I Example 10. In Ex. 4, we have r4 =
(
c(c1(x), c2(y)), c′(c(x, y))

)
and r2 = (c(t1, t2), true)

for c = gt(�1,�2), c1 = c2 = s(�1), c′ = �1, t1 = s(x) and t2 = 0. So, by Prop. 9,
(p1, q1) is correct w.r.t. R where p1 = gt(x, y) ? {x 7→ s(x), y 7→ s(y)} ? {x 7→ s(x), y 7→ 0}
and q1 = x ? ∅ ? {x 7→ true}. Identically, from r6 and r5 one gets: (p2, q2) is correct w.r.t. R
where p2 = add(x, y) ? {y 7→ s(y)} ? {y 7→ 0} and q2 = x ? {x 7→ s(x)} ? ∅.

Unification for pattern terms is not considered in [2]. As we need it in our development
(see Def. 13 below), we define it here.

I Definition 11. Let p and q be pattern terms and θ be a pattern substitution. Then, θ is a
unifier of p and q if p(n)θ(n) = q(n)θ(n) for all n ∈ N. Moreover, θ is a most general unifier
(mgu) of p and q if θ(n) ∈ mgu(p(n), q(n)) for all n ∈ N. We let mgu(p, q) be the set of all
mgu’s of p and q. All this is naturally extended to finite sequences of pattern terms.

In Sect. 2.2, we have defined the equivalence class of a rule modulo renaming. We also
need to adapt this concept to pattern rules.

I Definition 12. For all pattern rules r, we let [r] be the set of all pattern rules r′ such that
rules(r′) ⊆ [rules(r)]. Moreover, for all sets of pattern rules R, we let [R] =

⋃
r∈R[r].

Now, using the above concepts, we provide a counterpart of Def. 2 for pattern rules.

I Definition 13. For all TRSs R and all sets of pattern rules R, we let

UπR(R) =

(p, q)

∣∣∣∣∣∣∣∣∣∣

r = (u, c(s1, . . . , sn)) ∈ R, c ∈ χ(n)

((p1, v1 ? σ1 ? µ1), . . . , (pn, vn ? σn ? µn))�r [R]
σ ? µ ∈ mgu ((s1

?, . . . , sn
?) , (p1, . . . , pn))

σ commutes with the σis and µis
p = u ? σ ? µ and q = c(v1, . . . , vn) ? σ1 . . . σnσ ? µ1 . . . µnµ


The pattern unfolding of R from R is the set patunf (R, R) =

(
UπR
)∗(R).

I Example 14 (Ex. 4 continued). Let R = {(p1, q1), (p2, q2)} (see Ex. 10) and

p′1 = gt(x1, y1) ? {x1 7→ s(x1), y1 7→ s(y1)} ? {x1 7→ s(x1), y1 7→ 0}
q′1 = x1 ? ∅ ? {x1 7→ true}
p′2 = add(x2, y2) ? {y2 7→ s(y2)} ? {y2 7→ 0} q′2 = x2 ? {x2 7→ s(x2)} ? ∅

Then, we have ((p′1, q′1), (p′2, q′2))�r1 [R] where r1 = (while(true, x, y), c(gt(x, y), add(x, y)))
for c = while(�1,�2, s(y)) ∈ χ(2). Moreover, ρ ? ν ∈ mgu

((
gt(x, y)?, add(x, y)?

)
, (p′1, p′2)

)
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where ρ =
{
x 7→ s(x), y 7→ s(y), x2 7→ s(x2)

}
and ν =

{
x 7→ s(x1), y 7→ 0, x2 7→

s(x1)
}
. We note that ρ commutes with the substitutions of q′1 and q′2. So, rwhile =

(while(true, x, y) ? ρ ? ν, c(x1, x2) ? ρ′ ? ν′) ∈ UπR(R) where ρ′ = ∅{x2 7→ s(x2)}ρ = {x 7→
s(x), y 7→ s(y), x2 7→ s2(x2)} and ν′ = {x1 7→ true}∅ν = ν ∪ {x1 7→ true}.

The following result corresponds to the Soundness Thm. 7 of [2].

I Theorem 15. Let R be a TRS and R be a set of pattern rules. If R is correct w.r.t. R
then patunf (R, R) also is.

Non-termination can be detected from a pattern rule using the following criterion.

I Theorem 16 (Thm. 8 of [2]). Let (s ? σs ? µs, t ? σt ? µt) be correct w.r.t. a TRS R and
let there be an m ∈ N such that σt = σms σ

′ and µt = µsµ
′ for some σ′, µ′ ∈ S(Σ, X), where

σ′ commutes with σs and µs. If there is a π ∈ Pos(t) and some b ∈ N such that sσbs = t|π,
then sσns µs starts an infinite (possibly non-looping) →R-chain for all n ∈ N.

We note that the infinite chain of Thm. 16 may contain a loop (e.g., if m = 1 and b = 0).
But, as the following example illustrates, this is not always the case.

I Example 17 (Ex. 7 and Ex. 14 continued). Let us regard the pattern rule (p, q) of Ex. 7.
As rules((p, q)) ⊆ {rwhile

n | n ∈ N} ⊆ [rwhile
n | n ∈ N] = [rules(rwhile)] (see Ex. 14), we have

(p, q) ∈ [rwhile] by Def. 12. So, as [rwhile] ⊆ patunf (R, R), we have (p, q) ∈ patunf (R, R).
Moreover, as R is correct w.r.t. R (by Prop. 9), patunf (R, R) is correct w.r.t. R (by Thm. 15).
So, (p, q) is correct w.r.t. R. On the other hand, (p, q) = (uσ ? σ ? µ, uσ2 ? σσ′ ? µ) (see
Ex. 7) and σ′ commutes with σ and µ. Hence, by Thm. 16, for all n ∈ N the term
p(n) = uσσnµ = uσn+1µ = while(true, sn+2(x), sn+1(0)) starts an infinite →R-chain. This
implies that for all n > m > 0, while(true, sn(0), sm(0)) starts an infinite →R-chain (Ex. 4).

4 Conclusion

We have presented a work in progress on the detection of infinite non-looping chains in TRSs.
There are still many tasks to be completed. We have to implement our approach and to
compare it with that of [2]: for the moment, we simply observed that it is a reformulation of [2],
but we have to investigate further. Note that we already implemented a similar approach in
logic programming [6] and that we tested it on logic programs obtained by translating TRSs
introduced by the authors of [2] to evaluate their work. Our experiments suggest that our
approach and that of [2] are not orthogonal and do not completely overlap. We also have to
compare our work with other techniques for detecting non-looping chains [3, 4, 5].
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