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—— Abstract

Recently, we showed how to use control-flow refinement (CFR) to improve automatic complexity
analysis of integer programs. While up to now CFR was limited to classical programs, we extend
CFR to probabilistic programs and show its soundness for complexity analysis. To demonstrate its
benefits, we implemented our new CFR technique in our complexity analysis tool KoAT.
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1 A Birds-Eye-View on Control-Flow Refinement

There exist numerous tools for complexity analysis of (non-probabilistic) programs, e.g., [2-6,
10,11,15,16,18,19,24,25,28,30,32]. Our tool KoAT infers upper runtime and size bounds for
(non-probabilistic) integer programs in a modular way by analyzing subprograms separately
and lifting the obtained results to global bounds on the whole program [10]. Recently,
we developed several improvements of KoAT [18,24,25] and showed that incorporating
control-flow refinement (CFR) [13,14] increases the power of automated complexity analysis
significantly [18].

There are also several approaches for complexity analysis of probabilistic programs,
e.g., [1,7,9,21-23,27,29,31,34]. In particular, we also adapted KoAT’s approach for runtime
and size bounds, and introduced a modular framework for automated complexity analysis of
probabilistic integer programs in [27]. However, the improvements of KoAT from [18,24,25]
had not yet been adapted to the probabilistic setting. In particular, we are not aware of any
existing technique to combine CFR with complexity analysis of probabilistic programs.

Thus, we develop a novel CFR technique for probabilistic programs which could be
used as a black box by every complexity analysis tool. Moreover, to reduce the overhead
by CFR, we integrate CFR natively into KoAT by calling it on-demand in a modular way.
Our experiments show that CFR increases the power of KoAT for complexity analysis of
probabilistic programs substantially.

The idea of CFR is to gain information on the values of program variables and to sort
out infeasible program paths. For example, consider the probabilistic while-loop (1). Here,
we flip a (fair) coin and either set = to 0 or do nothing.

while >0 do z <+ 0 ©®, noop end (1)
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The update z < 0 is in a loop. However, after setting = to 0, the loop cannot be executed
again. To simplify its analysis, CFR “unrolls” the loop resulting in (2).

while z > 0 do break ®., noop end
if z > 0 then z + 0 end (2)

Here, x is updated in a separate, non-probabilistic if-statement and the loop does not change
variables. Thus, we sorted out (infeasible) paths where 2 + 0 was executed repeatedly.
Now, techniques for probabilistic programs can be used for the while-loop. The rest of the
program can be analyzed by techniques for non-probabilistic programs. In particular, this is
important if (1) is part of a larger program.

Our novel CFR algorithm for probabilistic integer programs is based on the partial
evaluation technique for non-probabilistic programs from [13, 14, 18]. In particular, our
algorithm coincides with the classical CFR technique when the program is non-probabilistic.
The goal of CFR is to transform a program P into a program P’ which is “easier” to analyze.
In the full version of this paper, we prove that both P and P’ have the same ezpected
runtime (see [26, Thm. 4]). Thus, our approach is not only sound but it also does not
increase the expected runtime. We apply CFR only on-demand on a subprogram (thus, CFR
can be performed in a modular way for different subprograms). In practice, we choose the
subprogram heuristically and use CFR only on parts of the program where our currently
inferred runtime bounds are “not yet good enough”.

2 Implementation and Evaluation

Up to now, our complexity analyzer KoAT used the tool iRankFinder [13] for CFR of non-
probabilistic programs [18]. To demonstrate the benefits of CFR for complexity analysis
of probabilistic programs, we now replaced the call to iRankFinder in KoAT by a native
implementation of our new CFR algorithm. KoAT is written in OCaml and it uses Z3 [12]
for SMT solving, Apron [20] to generate invariants, and the Parma Polyhedra Library [8] for
computations with polyhedra.

We used all 75 probabilistic benchmarks from [27,29] and added 15 new benchmarks
including our leading example and problems adapted from the Termination Problem Data
Base [33], e.g., a probabilistic version of McCarthy’s 91 function. Our benchmarks also contain
examples where CFR is useful even if it cannot separate probabilistic from non-probabilistic
program parts as in our leading example.

Table 1 shows the results of our experiments. We compared the configuration of KoAT with
CFR (“KoAT+CFR”) against KoAT without CFR. Moreover, as in [27], we also compared
with the main other recent tools for inferring upper bounds on the expected runtimes
of probabilistic integer programs (Absynth [29] and eco-imp [7]). As in the Termination
Competition [17], we used a timeout of 5 minutes per example. The first entry in every cell is
the number of benchmarks for which the tool inferred the respective bound. In brackets, we
give the corresponding number when only regarding our new examples. The runtime bounds
computed by the tools are compared asymptotically as functions which depend on the largest
initial absolute value n of all program variables. So for example, KoAT+CFR finds a finite
expected runtime bound for 84 of the 90 examples. A linear expected bound (i.e., in O(n))
is found for 56 of these 84 examples, where 12 of these benchmarks are from our new set.
AVG(s) is the average runtime in seconds on all benchmarks and AVG™T(s) is the average
runtime on all successful runs.
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o) O(n) O(n?) | 0(n>?) | O(EXP) <w AVGT(s) | AVG(s)
KoAT+CFR | 11 (2) | 56 (12) | 14 2 1 84 (14) 11.68 11.34
KoAT 9 41 (1) |16 (1) 2 1 69 (2 2.71 2.41
Absynth 7 35 9 0 0 51 2.86 37.48
eco-imp 8 35 6 0 0 49 0.34 68.02

Table 1 Evaluation of CFR on Probabilistic Programs

The experiments show that similar to its benefits for non-probabilistic programs [18],
CFR also increases the power of automated complexity analysis for probabilistic programs
substantially, while the runtime of the analyzer may become longer since CFR increases
the size of the program. The experiments also indicate that a related CFR technique is
not available in the other complexity analyzers. Thus, we conjecture that other tools for
complexity or termination analysis of PIPs would also benefit from the integration of our
CFR technique.

KoAT’s source code, a binary, and a Docker image are available at:

https://koat.verify.rwth-aachen.de/prob_cfr

The website also explains how to use our CFR implementation separately (without the rest
of KoAT), in order to access it as a black box by other tools. Moreover, the website provides
a web interface to directly run KoAT online, and details on our experiments, including our
benchmark collection.
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