Control-Flow Refinement for Complexity Analysis
of Probabilistic Programs

Nils Lommen &
RWTH Aachen University, Germany

Eléanore Meyer &
RWTH Aachen University, Germany

Jiirgen Giesl &2
RWTH Aachen University, Germany

—— Abstract

Recently, we showed how to use control-flow refinement (CFR) to improve automatic complexity
analysis of integer programs. While up to now CFR was limited to classical programs, we extend
CFR to probabilistic programs and show its soundness for complexity analysis. To demonstrate its
benefits, we implemented our new CFR technique in our complexity analysis tool KoAT.

2012 ACM Subject Classification Software and its engineering — Software verification and validation;
Theory of computation — Automated reasoning; Theory of computation — Logic and verification;
Theory of computation — Probabilistic computation

Keywords and phrases (Positive) Almost-Sure Termination, Control-Flow Refinement, Complexity
Analysis

Related Version Extended Abstract of our Conference Article [26]

1 A Birds-Eye-View on Control-Flow Refinement

There exist numerous tools for complexity analysis of (non-probabilistic) programs, e.g., [2-6,
10,11,15,16,18,19,24,25,28,30,32]. Our tool KoAT infers upper runtime and size bounds for
(non-probabilistic) integer programs in a modular way by analyzing subprograms separately
and lifting the obtained results to global bounds on the whole program [10]. Recently,
we developed several improvements of KoAT [18,24,25] and showed that incorporating
control-flow refinement (CFR) [13,14] increases the power of automated complexity analysis
significantly [18].

There are also several approaches for complexity analysis of probabilistic programs,
e.g., [1,7,9,21-23,27,29,31,34]. In particular, we also adapted KoAT’s approach for runtime
and size bounds, and introduced a modular framework for automated complexity analysis of
probabilistic integer programs in [27]. However, the improvements of KoAT from [18,24,25]
had not yet been adapted to the probabilistic setting. In particular, we are not aware of any
existing technique to combine CFR with complexity analysis of probabilistic programs.

Thus, we develop a novel CFR technique for probabilistic programs which could be
used as a black box by every complexity analysis tool. Moreover, to reduce the overhead
by CFR, we integrate CFR natively into KoAT by calling it on-demand in a modular way.
Our experiments show that CFR increases the power of KoAT for complexity analysis of
probabilistic programs substantially.

The idea of CFR is to gain information on the values of program variables and to sort
out infeasible program paths. For example, consider the probabilistic while-loop (1). Here,
we flip a (fair) coin and either set = to 0 or do nothing.

while >0 do z <+ 0 ©®, noop end (1)

mailto:lommen@cs.rwth-aachen.de
https://orcid.org/0000-0003-3187-9217
mailto:eleanore.meyer@cs.rwth-aachen.de
https://orcid.org/0000-0003-1038-4944
mailto:giesl@cs.rwth-aachen.de
https://orcid.org/0000-0003-0283-8520

Control-Flow Refinement for Complexity Analysis of Probabilistic Programs

The update z < 0 is in a loop. However, after setting = to 0, the loop cannot be executed
again. To simplify its analysis, CFR “unrolls” the loop resulting in (2).

while z > 0 do break ®., noop end
if z > 0 then z + 0 end (2)

Here, x is updated in a separate, non-probabilistic if-statement and the loop does not change
variables. Thus, we sorted out (infeasible) paths where 2 + 0 was executed repeatedly.
Now, techniques for probabilistic programs can be used for the while-loop. The rest of the
program can be analyzed by techniques for non-probabilistic programs. In particular, this is
important if (1) is part of a larger program.

Our novel CFR algorithm for probabilistic integer programs is based on the partial
evaluation technique for non-probabilistic programs from [13, 14, 18]. In particular, our
algorithm coincides with the classical CFR technique when the program is non-probabilistic.
The goal of CFR is to transform a program P into a program P’ which is “easier” to analyze.
In the full version of this paper, we prove that both P and P’ have the same ezpected
runtime (see [26, Thm. 4]). Thus, our approach is not only sound but it also does not
increase the expected runtime. We apply CFR only on-demand on a subprogram (thus, CFR
can be performed in a modular way for different subprograms). In practice, we choose the
subprogram heuristically and use CFR only on parts of the program where our currently
inferred runtime bounds are “not yet good enough”.

2 Implementation and Evaluation

Up to now, our complexity analyzer KoAT used the tool iRankFinder [13] for CFR of non-
probabilistic programs [18]. To demonstrate the benefits of CFR for complexity analysis
of probabilistic programs, we now replaced the call to iRankFinder in KoAT by a native
implementation of our new CFR algorithm. KoAT is written in OCaml and it uses Z3 [12]
for SMT solving, Apron [20] to generate invariants, and the Parma Polyhedra Library [8] for
computations with polyhedra.

We used all 75 probabilistic benchmarks from [27,29] and added 15 new benchmarks
including our leading example and problems adapted from the Termination Problem Data
Base [33], e.g., a probabilistic version of McCarthy’s 91 function. Our benchmarks also contain
examples where CFR is useful even if it cannot separate probabilistic from non-probabilistic
program parts as in our leading example.

Table 1 shows the results of our experiments. We compared the configuration of KoAT with
CFR (“KoAT+CFR”) against KoAT without CFR. Moreover, as in [27], we also compared
with the main other recent tools for inferring upper bounds on the expected runtimes
of probabilistic integer programs (Absynth [29] and eco-imp [7]). As in the Termination
Competition [17], we used a timeout of 5 minutes per example. The first entry in every cell is
the number of benchmarks for which the tool inferred the respective bound. In brackets, we
give the corresponding number when only regarding our new examples. The runtime bounds
computed by the tools are compared asymptotically as functions which depend on the largest
initial absolute value n of all program variables. So for example, KoAT+CFR finds a finite
expected runtime bound for 84 of the 90 examples. A linear expected bound (i.e., in O(n))
is found for 56 of these 84 examples, where 12 of these benchmarks are from our new set.
AVG(s) is the average runtime in seconds on all benchmarks and AVG™T(s) is the average
runtime on all successful runs.

N. Lommen et al.

o) O(n) O(n?) | 0(n>?) | O(EXP) <w AVGT(s) | AVG(s)
KoAT+CFR | 11 (2) | 56 (12) | 14 2 1 84 (14) 11.68 11.34
KoAT 9 41 (1) |16 (1) 2 1 69 (2 2.71 2.41
Absynth 7 35 9 0 0 51 2.86 37.48
eco-imp 8 35 6 0 0 49 0.34 68.02

Table 1 Evaluation of CFR on Probabilistic Programs

The experiments show that similar to its benefits for non-probabilistic programs [18],
CFR also increases the power of automated complexity analysis for probabilistic programs
substantially, while the runtime of the analyzer may become longer since CFR increases
the size of the program. The experiments also indicate that a related CFR technique is
not available in the other complexity analyzers. Thus, we conjecture that other tools for
complexity or termination analysis of PIPs would also benefit from the integration of our
CFR technique.

KoAT’s source code, a binary, and a Docker image are available at:

https://koat.verify.rwth-aachen.de/prob_cfr

The website also explains how to use our CFR implementation separately (without the rest
of KoAT), in order to access it as a black box by other tools. Moreover, the website provides
a web interface to directly run KoAT online, and details on our experiments, including our
benchmark collection.

—— References

1 Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotny. Lexicographic ranking
supermartingales: An efficient approach to termination of probabilistic programs. Proc.
ACM Program. Lang., 2(POPL), 2017. doi:10.1145/3158122.

2 Elvira Albert, Puri Arenas, Samir Genaim, and German Puebla. Automatic inference of upper
bounds for recurrence relations in cost analysis. In Proc. SAS, LNCS 5079, pages 221-237,
2008. doi:10.1007/978-3-540-69166-2_15.

3 Elvira Albert, Puri Arenas, Samir Genaim, Germéan Puebla, and Damiano Zanardini. Cost
analysis of object-oriented bytecode programs. Theor. Comput. Sci., 413(1):142-159, 2012.
d0i:10.1016/j.tcs.2011.07.009.

4 Elvira Albert, Miquel Bofill, Cristina Borralleras, Enrique Martin-Martin, and Albert Rubio.
Resource analysis driven by (conditional) termination proofs. Theory Pract. Log. Program.,
19(5—6):722*739, 2019. doi:10.1017/S1471068419000152.

5 Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. Multi-dimensional rankings,
program termination, and complexity bounds of flowchart programs. In Proc. SAS, LNCS
6337, pages 117-133, 2010. doi:10.1007/978-3-642-15769-1_8.

6 Martin Avanzini and Georg Moser. A Combination Framework for Complexity. In Proc. RTA,
LIPIcs 21, pages 55-70, 2013. doi:10.4230/LIPIcs.RTA.2013.55.

7 Martin Avanzini, Georg Moser, and Michael Schaper. A modular cost analysis for probabilistic
programs. Proc. ACM Program. Lang., 4(OOPSLA), 2020. URL: https://doi.org/10.1145/
3428240.

8 Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhedra Library: Toward
a complete set of numerical abstractions for the analysis and verification of hardware and
software systems. Sci. Comput. Program., 72:3-21, 2008. doi:10.1016/j.scico.2007.08.001.

9 Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Lena
Verscht. A calculus for amortized expected runtimes. Proc. ACM Program. Lang., 7(POPL),
2023. doi:10.1145/3571260.

https://koat.verify.rwth-aachen.de/prob_cfr
https://doi.org/10.1145/3158122
https://doi.org/10.1007/978-3-540-69166-2_15
https://doi.org/10.1016/j.tcs.2011.07.009
https://doi.org/10.1017/S1471068419000152
https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.4230/LIPIcs.RTA.2013.55
https://doi.org/10.1145/3428240
https://doi.org/10.1145/3428240
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1145/3571260

Control-Flow Refinement for Complexity Analysis of Probabilistic Programs

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jiirgen Giesl. Analyzing
Runtime and Size Complexity of Integer Programs. ACM Trans. Program. Lang. Syst., 38:1-50,
2016. doi:10.1145/2866575.

Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. Compositional certified resource
bounds. In Proc. PLDI, pages 467-478, 2015. doi:10.1145/2737924.2737955.

Leonardo de Moura and Nikolaj Bjgrner. Z3: An Efficient SMT Solver. In Proc. TACAS,
LNCS 4963, pages 337-340, 2008. doi:10.1007/978-3-540-78800-3_24.

Jests J. Doménech and Samir Genaim. iRankFinder. In Proc. WST, page 83, 2018. http:
//wst2018.webs.upv.es/wst2018proceedings.pdf.

Jests J. Doménech, John P. Gallagher, and Samir Genaim. Control-flow refinement by partial
evaluation, and its application to termination and cost analysis. Theory Pract. Log. Program.,
19(5-6):990-1005, 2019. doi:10.1017/S1471068419000310.

Antonio Flores-Montoya. Upper and lower amortized cost bounds of programs expressed as cost
relations. In Proc. FM, LNCS 9995, pages 254-273, 2016. doi:10.1007/978-3-319-48989-6_
16.

Florian Frohn and Jiirgen Giesl. Complexity analysis for Java with AProVE. In Proc. iFM,
LNCS 10510, pages 85-101, 2017. doi:10.1007/978-3-319-66845-1_6.

Jurgen Giesl, Albert Rubio, Christian Sternagel, Johannes Waldmann, and Akihisa Yamada.
The termination and complexity competition. In Proc. TACAS, LNCS 11429, pages 156-166,
2019. doi:10.1007/978-3-030-17502-3_10.

Jirgen Giesl, Nils Lommen, Marcel Hark, and Fabian Meyer. Improving Automatic Complexity
Analysis of Integer Programs. In The Logic of Software. A Tasting Menu of Formal Methods,
LNCS 13360, pages 193-228, 2022. doi:10.1007/978-3-031-08166-8_10.

Jan Hoffmann, Ankush Das, and Shu-Chun Weng. Towards automatic resource bound analysis
for OCaml. In Proc. POPL, pages 359-373, 2017. doi:10.1145/3009837.3009842.

Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract domains for static
analysis. In Proc. CAV, LNCS 5643, pages 661-667, 2009. doi:10.1007/978-3-642-02658-4 _
52.

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo.
Weakest precondition reasoning for expected runtimes of randomized algorithms. J. ACM,
65:1-68, 2018. doi:10.1145/3208102.

Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. Expected runtime
analyis by program verification. In Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva,
editors, Foundations of Probabilistic Programming, page 185-220. Cambridge University Press,
2020. doi:10.1017/9781108770750.007.

Lorenz Leutgeb, Georg Moser, and Florian Zuleger. Automated expected amortised cost
analysis of probabilistic data structures. In Proc. CAV, LNCS 13372, pages 70-91, 2022.
do0i:10.1007/978-3-031-13188-2_4.

Nils Lommen, Fabian Meyer, and Jirgen Giesl. Automatic Complexity Analysis of Integer
Programs via Triangular Weakly Non-Linear Loops. In Proc. IJCAR, LNCS 13385, pages
734-754, 2022. doi:10.1007/978-3-031-10769-6_43.

Nils Lommen and Jiirgen Giesl. Targeting Completeness: Using Closed Forms for Size
Bounds of Integer Programs. In Proc. FroCoS, LNCS 14279, pages 3-22, 2023. doi:10.1007/
978-3-031-43369-6_1.

Nils Lommen, Eléanore Meyer, and Jiirgen Giesl. Control-Flow Refinement for Complexity
Analysis of Probabilistic Programs in KoAT (Short Paper). In Proc. IJCAR, LNCS 14739,
pages 233-243, 2024. doi:10.1007/978-3-031-63498-7_14.

Fabian Meyer, Marcel Hark, and Jiirgen Giesl. Inferring Expected Runtimes of Probabilistic
Integer Programs Using Expected Sizes. In Proc. TACAS, LNCS 12651, pages 250-269, 2021.
doi:10.1007/978-3-030-72016-2_14.

Georg Moser and Michael Schaper. From Jinja bytecode to term rewriting: A complexity
reflecting transformation. Inf. Comput., 261:116-143, 2018. doi:10.1016/j.ic.2018.05.007.

https://doi.org/10.1145/2866575
https://doi.org/10.1145/2737924.2737955
https://doi.org/10.1007/978-3-540-78800-3_24
http://wst2018.webs.upv.es/wst2018proceedings.pdf
http://wst2018.webs.upv.es/wst2018proceedings.pdf
https://doi.org/10.1017/S1471068419000310
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-66845-1_6
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-031-08166-8_10
https://doi.org/10.1145/3009837.3009842
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1145/3208102
https://doi.org/10.1017/9781108770750.007
https://doi.org/10.1007/978-3-031-13188-2_4
https://doi.org/10.1007/978-3-031-10769-6_43
https://doi.org/10.1007/978-3-031-43369-6_1
https://doi.org/10.1007/978-3-031-43369-6_1
https://doi.org/10.1007/978-3-031-63498-7_14
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1016/j.ic.2018.05.007

N. Lommen et al.

29

30

31

32

33
34

Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. Bounded expectations: Resource
analysis for probabilistic programs. In Proc. PLDI, pages 496512, 2018. URL: https:
//doi.org/10.1145/3192366.3192394.

Lars Noschinski, Fabian Emmes, and Jirgen Giesl. Analyzing Innermost Runtime Complexity
of Term Rewriting by Dependency Pairs. J. Autom. Reason., 51:27-56, 2013. doi:10.1007/
s10817-013-9277-6.

Philipp Schréer, Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph
Matheja. A Deductive Verification Infrastructure for Probabilistic Programs. Proc. ACM
Program. Lang., 7(OOPSLA):2052-2082, 2023. doi:10.1145/3622870.

Moritz Sinn, Florian Zuleger, and Helmut Veith. Complexity and resource bound analysis
of imperative programs using difference constraints. J. Autom. Reason., 59(1):3—45, 2017.
d0i:10.1007/s10817-016-9402-4.

TPDB (Termination Problem Data Base). URL: https://github.com/TermCOMP/TPDB.

Di Wang, David M. Kahn, and Jan Hoffmann. Raising expectations: Automating expected
cost analysis with types. Proc. ACM Program. Lang., 4(ICFP), 2020. URL: https://doi.
org/10.1145/3408992.

https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1007/s10817-013-9277-6
https://doi.org/10.1007/s10817-013-9277-6
https://doi.org/10.1145/3622870
https://doi.org/10.1007/s10817-016-9402-4
https://github.com/TermCOMP/TPDB
https://doi.org/10.1145/3408992
https://doi.org/10.1145/3408992

	1 A Birds-Eye-View on Control-Flow Refinement
	2 Implementation and Evaluation

