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Abstract
KoAT is an automated tool for inferring runtime and size bounds – and proving termination – of
(probabilistic) integer programs by analyzing program fragments in a modular way and combining
their bounds. It uses multiphase linear ranking functions to capture execution “phases” of loops and
a technique for triangular weakly non-linear loops (twn-loops), enabling the analysis of programs
with non-linear arithmetic.
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KoAT is a tool to automatically infer complexity bounds for (probabilistic) integer programs,
based on an alternating modular inference of upper runtime and size bounds for program
parts [2]. By inferring runtime bounds for individual subprograms repeatedly, in the end we
obtain a bound on the runtime complexity of the whole program. Furthermore, KoAT can be
used to automatically prove termination of programs.

To infer runtime bounds for subprograms, we use multiphase linear ranking functions
(MΦRFs) [1, 3]. In contrast to classical ranking functions, MΦRFs can also represent bounds
on multiple “phases” of program executions. Moreover, we embedded a complete technique for
inferring runtime bounds of triangular weakly non-linear loops (twn-loops) in our complexity
analysis tool [4, 7]. The update of a twn-loop is triangular, i.e., we can order the program
variables such that the update of any xi does not depend on the variables x1, . . . , xi−1 with
smaller indices. So the restriction to triangular updates prohibits “cyclic dependencies” of
variables. Due to this, one can compute closed forms for the repeated updates of twn-loops,
which makes them especially suitable for automatic program analysis. In particular, this
approach also allows us to analyze the complexity of programs with non-linear arithmetic.
In addition, we developed a novel procedure to infer size bounds via closed forms as well,
which is also suitable for programs with non-linear arithmetic [5, 7]. Furthermore, recently
we extended our framework such that (possibly recursive) function calls can be represented
naturally and analyzed by our tool KoAT. KoAT is also used in the framework AProVE (KoAT
+ LoAT) [8] to automatically prove termination of C programs.

We adapted KoAT’s framework for automated complexity analysis to probabilistic integer
programs in [9]. To improve the power of automatic complexity analysis further, we integrated
control-flow refinement via partial evaluation into KoAT’s approach [3] and recently adapted
this refinement for probabilistic programs as well [6].
KoAT’s source code, a web interface, a binary, and a Docker image are available at

https://koat.verify.rwth-aachen.de.
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