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Abstract
We show that universal positive almost sure termination (UPAST) is decidable for a class of simple
randomized programs, i.e., it is decidable whether the expected runtime of such a program is finite
for all inputs. Our class contains all programs that consist of a single loop, with a linear loop guard
and a loop body composed of two linear commuting and diagonalizable updates. In each iteration of
the loop, the update to be carried out is picked at random, according to a fixed probability. We
show the decidability of UPAST for this class of programs, where the program’s variables and inputs
may range over various sub-semirings of the real numbers. In this way, we extend a line of research
initiated by Tiwari in 2004 into the realm of randomized programs.
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1 Introduction

We consider the problem of universal positive almost sure termination (UPAST), i.e., deciding
whether a given randomized program has finite expected runtime on all inputs [5, 26]. This is
a stronger property than universal almost sure termination (UAST) which requires that the
probability of termination is 1. In [16], the authors showed that deciding UPAST is harder
than deciding universal termination for non-randomized programs in terms of the arithmetic
hierarchy. While the non-randomized problem is Π0

2-complete, UPAST is Π0
3-complete.

Our programs are simple randomized loops of the form

while C #»x >
#»0 : #»x ← A #»x ⊕p B #»x (1)

Here, #»x = (x1, . . . , xn) denotes the vector of program variables that range over a semiring
S ⊆ R, and C ∈ Rm×n is a matrix representing the loop guard with m linear constraints
over the program variables. In each execution of the loop body, a matrix is chosen among
A, B ∈ Sn×n according to the probability p ∈ [0, 1] and the value #»x is updated accordingly.

We show that UPAST is decidable for all S ∈ {Z,Q,A} when limited to loops with
diagonalizable commuting matrices A and B, where A is the set of algebraic real numbers.1

1 Our approach only considers algebraic p, A, B, and C, as it is not possible to represent arbitrary real
numbers on computers. However, such a loop terminates for all algebraic inputs iff it terminates for all
real inputs, see [20, Remark 38].
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Thus, we extend previous results on the termination of linear and affine2 non-randomized
loops to the randomized setting. In addition to deciding universal termination, our approach
can compute a non-termination witness #»x ∈ Sn, i.e., if the loop is non-terminating, then #»x

is an input leading to an infinite expected runtime. So our programs go beyond single path
loops as we might have A ̸= B. Thus, for every k ∈ N, there is not just a single execution of
length k but instead one has a “range” of possible executions of length k where each execution
occurs according to a known probability. To ensure tractability of the resulting problem we
require commutativity of both updates, so that we can focus on how often each update has
been selected in an execution, but we do not have to take the 2k different orders into account
in which the two updates might have been chosen. Moreover, we require diagonalizability in
order to obtain closed forms of a certain shape, which allows us to analyze the behavior of a
“range” of different executions at once.

To demonstrate the practical applicability of our decision procedure and the computation
of non-termination witnesses, we provide a prototype implementation for the case S = A in
our tool SiRop (for “Simple Randomized Loops”). The tool and a corresponding collection of
exemplary programs can be obtained from

https://github.com/aprove-developers/SiRop

In particular, our tool managed to find a non-terminating algebraic input for one3 of the only
two problems from the category C Integer which were not solved by any tool at the 2023
Termination Competition [12],4 the other one being the Collatz problem. While our tool
only considers S = A (whereas the problem is formulated over the integers), the constraints
generated by SiRop are unsatisfiable over Z, which implies universal termination of the
program over the integers.

Related Work: We continue a line of research started in 2004 by Tiwari [27] who showed
decidability of universal termination for loops with an affine guard and an affine update as
its body, where the guard, updates, and inputs range over the real numbers. In his proof,
Tiwari reduced the affine to the linear case. In 2006, Braverman [6] proved that the problem
remains decidable for loops and inputs ranging over the rational numbers Q, and if the guard
and update are linear, then he also showed decidability over the integers Z. Similar to Tiwari,
Braverman also reduced the affine case for Q to the linear case. In 2015, Ouaknine et al.
proved [25] that the affine case is decidable over the integers Z whenever the update is of
the form #»x ← A #»x + #»a , provided that A ∈ Zn×n is diagonalizable. This restriction was
removed by Hosseini et al. in 2019 [15]. In a related line of work, we proved decidability of
universal termination over the integers Z for triangular affine loops, i.e., where the matrix
A ∈ Zn×n is triangular [10]. Later, we extended these results to triangular weakly non-linear
loops which extend triangular loops by allowing certain non-linear updates [13, 14].

The only decidability results for termination of randomized programs that we are aware
of consider probabilistic vector addition systems [7] or constant probability programs [11].
The programs in [7, 11] are orthogonal to the ones considered in our approach as they can
only modify the program variables by adding constants, but do not allow for multiplication.
Another related area of research [3, 18, 23] deals with prob-solvable loops and moment

2 In an affine (or non-homogeneous) loop, the guard may have the form C #»x > #»c and the update may
have the form #»x ← A #»x + #»a for arbitrary vectors #»c and #»a .

3 https://github.com/TermCOMP/TPDB/blob/11.3/C_Integer/Stroeder_15/
ChenFlurMukhopadhyay-SAS2012-Ex2.06_false-termination.c

4 This category was not part of the 2024 competition.
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invariants. However, in contrast to our method, these techniques require that all variables in
the loop guard may only take finitely many values. Moreover, there are many automated
approaches for tackling UPAST using ranking supermartingales (RSM), e.g., [1, 2, 4, 8, 9,
19, 22, 24, 28]. To generate a suitable RSM, one often uses techniques based on affine or
polynomial templates, which renders the approach incomplete.

2 Outline of our Approach

For a loop as in (1), we consider (finite) executions f corresponding to words over the alphabet
{A, B}, where the i-th symbol in f indicates which update matrix was used in the i-th
application of the assignment #»x ← A #»x ⊕p B #»x . For such executions f , |f |A and |f |B denote
the number of A- and B-symbols in f , respectively. Moreover, we introduce the function
Val #»x that maps finite executions f to the values Val #»x (f) ∈ Rm of the constraints in the
loop guard after executing f on a concrete input #»x ∈ Rn, i.e., Val #»x (f) = C ·A|f |A ·B|f |B · #»x ,
since A and B commute. Our decision procedure does not search for a non-terminating
input directly, but for an eventually non-terminating input #»x . An input #»x is eventually
non-terminating if by repeated execution of the loop body on #»x (while ignoring the guard), a
non-terminating input can eventually be reached. We show that such a loop has an eventually
non-terminating input iff it also has a non-terminating input. One can then show how such
an eventually non-terminating input can be lifted to an actual non-terminating input.

We introduce a mapping U that maps executions f to the difference between the relative
number |f |A

|f | of times that the update matrix A has been chosen in f and the probability
p of choosing A, i.e., U(f) = |f |A

|f | − p. Moreover, we essentially partition the set of indices
{1, . . . , n} of all program variables into suitable sets D(i,o) with (i, o) ∈ I for some finite set
I ⊊ R2

>0. We then show that for all c ∈ {1, . . . , m}, and all executions f with |f |A, |f |B ≥ 1,
the value (Val #»x (f))c of the c-th constraint after executing f on #»x is

(Val #»x (f))c =
∑

(i,o)∈I
(
i · oU(f))|f | ∑

i∈D(i,o)
ζ

|f |A

i,A ζ
|f |B

i,B γc,i( #»x ). (2)

Here, all ζi,A, ζi,B are complex numbers of modulus 1, i.e., |ζi,A| = |ζi,B| = 1 for all
i ∈ {1, . . . , n}, and the functions γc,i are linear maps Rn → C. The maps γc,i and the values
ζi,A, ζi,B ∈ C only depend on the matrices C, A, and B, but not on the specific input #»x .
While weaker requirements would suffice to ensure that (Val #»x (f))c has some closed form,
diagonalizability of A and B guarantees that it has the form (2), which is crucial for our
procedure. By a lexicographic comparison of those (i, o) ∈ I for which the inner sum in (2)
is not 0 for all executions f , one can compute which of the pairs (i, o) is the “dominant”
one. Here, a pair (i, o) ∈ I is considered dominant whenever the value of the first factor(
i · oU(f))|f | of (2) grows the fastest if the execution of f is continued (i.e., if |f | → ∞) and

the corresponding inner sum is not 0 for all executions f . The dominant pair depends on the
specific input #»x and on whether U(f) is positive or negative, and correspondingly, one has to
use different lexicographic comparisons to determine the dominant pair. For d ∈ {n, p}, let
Dd,c, #»x denote the set D(i,o) where the pair (i, o) is dominant for input #»x and c ∈ {1, . . . , m}
(and positive U(f) if d = p or negative U(f) for d = n). Then, the sign of the “coefficient”
v(f) =

∑
i∈Dd,c, #»x

ζ
|f |A

i,A ζ
|f |B

i,B γc,i( #»x ) of the dominant pair eventually determines the sign of
(Val #»x (f))c, provided that |v(f)| is large enough. This also indicates why an extension of our
approach to programs with three instead of two update matrices would be problematic. Then
instead of U(f) we would need a vector to express how much an execution deviates from
the probabilities in the program. This would break the underlying concepts, since instead of
d ∈ {n, p}, we would have to consider the “direction” of this deviation.
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We then consider the rearrangement

v(f) =
∑

i∈Rd,c, #»x

γc,i( #»x )︸ ︷︷ ︸
=R

+
∑

i∈Cd,c, #»x
ζ

|f |A

i,A ζ
|f |B

i,B γc,i( #»x ) (3)

where Rd,c, #»x = {i ∈ Dd,c, #»x | ζi,A = ζi,B = 1} and Cd,c, #»x = {i ∈ Dd,c, #»x | {ζi,A, ζi,B} ≠ {1}}.
This leads us to a necessary condition for non-termination (and hence a sufficient condition
for universal termination): If #»x is an eventually non-terminating input, then there must be
a d ∈ {n, p} such that we have R > 0 for all constraints c, with R as in (3).

This necessary condition for non-termination is then turned into a sufficient condition. To
that end, we define the set W of witnesses for eventual non-termination containing all inputs
#»x ∈ Sn for which there is some d ∈ {n, p} such that R >

∑
i∈Cd,c, #»x

|γc,i( #»x )| holds for all
constraints c. All witnesses #»x ∈W are eventually non-terminating. While this condition is
only sufficient for non-termination, one shows that if the program admits a non-terminating
input, then there is also an input in W . So the considered program is non-terminating iff
W ̸= ∅, i.e., the program is universally terminating iff W = ∅.

Finally, we obtain a decision procedure for the problem UPAST. Here, we use that
W is semi-algebraic and thus the emptiness problem is decidable over the real algebraic
numbers, i.e., if S = A. Moreover, W can be represented as a finite union of convex semi-
algebraic sets. Hence, emptiness of W can also be decided over the rationals and integers [17].
Moreover, witnesses for non-termination can be obtained from eventually non-terminating
inputs #»x ∈W .
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