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—— Abstract

We adapt our recently introduced higher-order reduction order NCPO to n-long normal forms
which makes it directly applicable to Nipkow’s higher-order rewrite systems.
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1 Introduction

We recently introduced NCPO [8,9], a reduction order for proving termination of higher-order
rewriting on Sn-normal forms where matching modulo 87 is employed. This formalism is very
similar to Nipkow’s higher-order rewrite systems (HRSs) [7] which work with 87-long normal
forms instead. As higher-order recursive path orders like NCPO usually have a hard time
dealing with lambda abstractions, we defined it for Sn-normal forms which typically contain
fewer lambda abstractions than 8rn-long normal forms. However, this design choice excludes
the direct applicability of NCPO to HRSs. For NCPO’s cousin NHORPO [5], this was
resolved by putting it into a suitable wrapper which makes it applicable to any orientation of
7. However, there are benefits of directly working on 7n-long normal forms: For both NCPO
and NHORPO, termination can only be guaranteed for terms where each function symbol is
applied to as many arguments as required by its arity. This is not a problem for Sn-long
normal forms since function symbols (and variables) are always maximally applied. Moreover,
choosing the largest possible arity for each function symbol potentially enhances the power
of NCPO and NHORPO. Finally, Sn-long normal forms facilitate an easier definition of
the important concept of nonversatile terms. Hence, we will directly adapt the definition
of NCPO to fpn-long normal forms despite the potentially increased number of lambda
abstractions which the order has to deal with. Our preliminary results suggest that the
resulting reduction order is a powerful and lightweight termination method for HRSs.

2 Preliminaries

In this paper, we consider higher-order rewriting on simply-typed lambda terms [1,3]. Given
a set S of sorts, we define the set of simple types 7 as usual and follow the convention that
the function space constructor — is right-associative, i.e., a = b — ¢ denotes a — (b — ¢).
Throughout this text, lowercase letters a,b,c,... denote sorts while upper case letters
T,U,V,... denote arbitrary types. For each type U € T we consider an infinite set of variables
Vu as well as a set of function symbols Fyy where VyNFy = @ and VyNVy = FyNFy =9
for V # U. We denote the set of all variables and function symbols by V = {Vy | U € T}
and F = |J{Fu | U € T}, respectively. The set of simply-typed lambda terms of a type
U (Ay) is defined as follows: Vy U Fy C Ay, if x € Vy and s € Ay then Az.s € Ay,
and if s € Ay_yv and t € Ay then st € Ay. We follow the convention that application is
left-associative, i.e., stu denotes (st)u. A term is a member of the set A = J{Ay |U € T}
and we define the function 7: A — T as 7(s) = U if s € Ay.
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We write FV(s) for the set of free variables of a term s. The term s[x/t¢] denotes the term
where all free occurrences of x have been replaced by t without capturing the free variables
of t (capture-avoiding substitution). Due to the fact that infinitely many variables are
available for each type, this can always be done by renaming the bound variables accordingly
(a-renaming). In the remainder, we abstract away from this technicality by viewing lambda
terms as equivalence classes modulo a-renaming. Every term s has a unique S-normal form
which we denote by s]g. Given a -normal form s, we write s1" for its unique n-expanded
form. Put together, every term s has a unique gn-long normal form sig = 5]31". Terms in
Bn-long normal form do not contain partial applications, so we can use syntactic sugar where
we assign the maximal possible arity to each h € F UV and write h(ty,...,t,) instead of
hty ...t,. Rewriting to S-normal form and the set of S7-long normal forms are denoted by
—>!ﬁ and NF(Bn~1) C A, respectively.

A fn-long normal substitution ¢ is a mapping from variables to #n-long normal forms
of the same type where Dom(o) = {x | o(z) # 21"} is finite. We often write o as a set
of variable bindings. Given a substitution o = {z1 — ¢1,..., 2, — t,}, we define so as
the simultaneous capture-avoiding substitution s[xy/ti,...,z,/t,]. The free variables of a
substitution are defined as follows: FV (o) = [J{FV(c(x)) | * € Dom(c)}. A substitution is
said to be away from a finite set of variables X if (Dom(c) UFV(o))NX = @.

Contexts C are lambda terms which contain exactly one occurrence of the special symbol
O which can assume any type. We write C[s] for the lambda term C' where O is replaced by
s without employing capture-avoiding substitution. A binary relation R C A x A is monotone
if s Rt implies C[s] R C]t] for every context C. Furthermore, we say that a term ¢ is a
subterm of s (s I> t) if there exists a context C such that s = C[t] and define the proper
subterm relation s>t as s > t and s # t. Since we view lambda terms as equivalence classes
modulo a-renaming, the subterm relation is also defined modulo a-renaming. Hence, we
have e.g. \x.t > t[x/z] for a fresh variable z.

A pair of terms ¢ — r with £,7 € NF(8n~!) and 7(¢) = 7(r) € S constitutes a rule if
FV(r) C FV(¢) and £ is not of the form x(¢1, ... ,t,). A higher-order rewrite system (HRS) is a
set of rules. Given an HRS R, its rewrite relation —x is defined as follows: There is a rewrite
step s =g t if there exist a rule £ — r € R, a fn-long normal substitution ¢ and a context
C such that s = C[lolg] € NF(Bn~!) and t = C[r6}s]. Note that our definition of HRSs
is equivalent to the original one given in [7]. In particular, -z C NF(8n~!) x NF(8n~1).
Hence, both rules and rewrite steps only consider terms in their unique Sn-long normal form
whereas matching is performed modulo 8n. We say that an HRS R is terminating if —x is
well-founded. We now define the notion of Sn-long normal higher-order reduction orders.

» Definition 1. A 7-long normal higher-order reduction order is a pair (>, 1) which satisfies
the following conditions: 13 C A x A is a well-founded relation, 3 is monotone, —g C 1,
and s >t implies solg 3T talg for all s,t € NF(Bn~1) and Bn-long normal substitutions o.
We often refer to the last condition as Sn-long normal stability. An HRS R is compatible
with a Bn-long normal higher-order reduction order (>,3) if £ >V r for all{ —r € R.

As in [5,9], the intuition behind this definition is that > will be used to orient the rules of
HRSs while relying on the termination proof of its plain variant . Despite calling (>, 1) an
order, we do not demand transitivity of any of its components. In the context of higher-order
rewriting, this is standard as 7 contains S-reduction which is not transitive. By taking the
identity substitution, we can see that Sn-long normal stability implies > C T+.

» Theorem 2. If an HRS R is compatible with a 5n-long normal higher-order reduction
order (>,21), then R is terminating.
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Proof. For a proof by contradiction, consider an infinite rewrite sequence s; =g so =g - -.
By definition, s; = C[lolg] and s3 = C[rolg] for some ¢ — r € R where o is a fn-long normal
substitution and C is a context such that C[¢o]g] € NF(Bn~1). By assumption, £ >T r, so
lols 37 rolg follows from Bn-long normal stability and we obtain C[lolg] 3% Clrols] by

monotonicity of . Hence, we can transform the infinite sequence s; —x s2--- into the
infinite descending sequence s; 37 sy --- which contradicts well-foundedness of 1. Thus, R
is terminating. <

3 The Beta-Eta-Long-Normal Computability Path Order

We start by adapting the notion of nonversatile terms from [5,9] to Sn-long normal forms.
Intuitively, a term in Sn-long normal form is nonversatile if the application of any Sn-long
normal substitution together with the subsequent S-normalization only affects its proper
subterms. As this is needed in the inductive proof of Sn-long normal stability, a comparison
s >t in our order is only defined for nonversatile s. As opposed to [5,9], we can directly
define the class of nonversatile terms since we work on S7n-long normal forms: Fully applied
function symbols and lambda abstractions are nonversatile while fully applied variables are
versatile. The set of nonversatile terms is denoted by A,, C NF(Bn~1).

Besides the usual inference rules on terms, reduction orders derived from HORPO [4]
require appropriate orders on types. The following definition recalls the notion of admissible
type orders from CPO [2].

» Definition 3. We define the left (right) argument relation on types >y (>.) as follows:
T—Us T (T — Ub.U). An order =1 on types is admissible if >. C =7, > = (=7 Ud;)T
is well-founded, and if T — U =7V then U =7V or V=T = U withU =+ U’'. Given a
type T and a € S we write a >sT (a 25 T) ifa>0b (a = b) for every b € S occurring in T.

» Lemma 4 (Lemma 2.3 from [2]). Given a well-founded order =g on sorts, let =1 be the
smallest order on types containing =s and >, such that V =7 V' impliesU — V =3+ U — V'
for allU, V and V'. Then, > is admissible.

Unlike their first-order versions, higher-order recursive path orders do not enjoy the
subterm property. Thus, if we want to recursively define f(tf) > v by t; > v for some i, we
usually have to check whether 7(¢;) =7 7(v) holds for the given admissible type order 7.
In particular, this means that establishing s > t by choosing some s> s’ and showing s’ > ¢
is only possible if we check that there is a weak decrease in the admissible type order for
all intermediate terms in the recursive definition of >. CPO extends HORPO by allowing
these checks to be dismissed for the special case of accessible subterms which are determined
by type-related properties. To this end, we use the sets Pos™(T') and Pos,(T') of positive
sort positions and positions of a € S in a type T € T as defined in [2, Definition 7.2] in
the following definition of accessible arguments of function symbols and basic sorts as given
in [2, Definitions 7.3 & 7.4].

» Definition 5. With every f € Fr—...oo1,—a we associate a set Acc(f) of accessible
arguments of f such that i € Acc(f) implies a 25 T; and Pos,(T;) C Post(T;) for all
1 < i < n. Furthermore, we say that a € S is basic if the following conditions hold: T <1 a
implies that T is a basic sort, and for all f € Fr,—..os1, —a and i € Acc(f), T; = a or T; is
a basic sort.

Note that the condition T <7 a is straightforward to check with the admissible type
order from Lemma 4 as only sorts can be smaller than sorts. Next, we define the notion of
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(Fo) f(&) >PX vif f € Fand t; ¥ - >, - 22 v for some 4
(F=ma) F@) > g(a) if f 27 g, stat(f) = mul and 7 (>? Ub- =) @

(F=ie) f(t) >"* g(u) if f ~7 g, stat(f) = lex and
Jit; > UBE- —>'B w; and Vj < i.t; = u; and Vj > 4. f(£) >>X ¢;

(F=) f@) >P% g(a)if f € F, f =7 gand f(£) >>* w; for all i

(FV) ft) >V X y(a) if f € F, f(#) >%% y17 and f(£) >V u, for all i
(FAY f(O) > Ay if f € F, f(£) >¥X= wly/z), 7(y) = 7(2) and 2 fresh
(FX) f@&) >*X ypmif fe Fandye X

W) Azt >PX wif tfx/z] 22X v, 7(2) = 7(2) and 2 fresh

(A=) Azt >UF Ay if t{x/z] V% vly/z], 7(x) = T(y) = 7(2) and 2 fresh
AA) Azt >UF Ay if At >PX wly/z], T(x) # 7(y) = 7(2) and 2 fresh

Figure 1 Rules of NCPO-LNF.

nonversatilely accessible subterms. The definition closely follows the one given in [2, Definition
7.5] but with appropriate modifications regarding nonversatility and n-long normal forms.

» Definition 6. We write s>p¥ t if t is a subterm of s € An, Teachable by nonversatile
intermediate terms in the recursive definition of >, t is of basic sort and FV(t) C FV(s), i.e.,
no bound variables have become free. Furthermore, syt if s = f(s1,...,5,) and s; >4t for
J € Acc(f). Note that >l¥,>, C NF(Bn~1) x NF(Bn~1). A term t is nonversatilely accessible
in a nonversatile term s if s>RYt or s>, t.

The following definition, adapted from [2, Definition 7.8], introduces the notion of
structurally smaller terms with respect to a set of variables X. It is an important ingredient
of CPO with accessible subterms as it facilitates a way of using the set X with which the
order is parameterized in places where it would otherwise lead to non-termination.

» Definition 7. Let X be a finite set of variables. We say that a term t is structurally
smaller than a term s € NF(8n~1), written s> t, if there are a € S, x1,...,7, € X and
wE€ Ary .51, v Such that t = uxy -+ Xy, Sy u, 7(s) = a, 7(x;) =T; ,and Pos,(T;) = @
for all 1 <i < n. Here, >a C NF(Bn71) x A.

In the following, let >=7 be an admissible order on types and =~ a preorder on F called
precedence with a well-founded strict part =z = = \ S and the equivalence relation
~r = = N Zr. Furthermore, for every f € F we fix a status stat(f) € {mul,lex} such
that symbols equivalent in ~ have the same status. We are now able to lift CPO with
accessible subterms and small symbols [2] to an appropriate component of a Sn-long normal
higher-order reduction order.

» Definition 8. Given a finite set X of variables and b € {0,1}, the order >>*C NF(pn~1) x
NF(Bn~1) is inductively defined in Figure 1. Furthermore, s >%X t if s >¥X t and 7(s) =7
7(t), and > (>%) is a shorthand for >%2 (>b9).

Note that s >%X ¢ is well-defined by induction on (b, s,t) with respect to the well-founded
order (>y,>,>)ex.- We refer to >1 as the Bn-long normal computability path order (NCPO-
LNF) and use the symbol J with the same decorations as > (except for b) to denote CPO
with accessible subterms. The definition of > is an adaption of the corresponding definition
for NCPO to fn-long normal forms. In particular, the modifications of the original rules
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Table 1 Experimental results.

problem NCPO-LNF NCPO WANDA
[9, Example 6] (extended) v X v
[9, Example 7] v v v
[9, Example 8] v v v
[2, Example 5.2] v v v
[2, Example 7.1] v v X
[2, Example 8.19] v v v
[5, Example 7.1] v v v
[5, Example 7.2] X X v
[5, Example 7.3] v v v
neutr.p X X v
neutrN.p v v v

(FQ) and (FV) justify renaming them to (FV) and (FX), respectively. Moreover, the rule
(A>n) of NCPO has been removed and we do not need cases for applications on the left-hand
side as terms of the form y(t) are versatile. Furthermore, we removed the rule {(\V) because
for variables of functional type, Az.t >% 31" cannot be directly simulated in CPO which
we need for the proof of Sn-long normal stability. We also removed the extension of CPO
to small symbols: Since terms are in Sn-long normal form, applicative uncurried systems,
the main motivation behind small symbols in [2], do not have to be considered anymore.
Without applications we would still have the (AF) rule which allows us to discard small
symbols when comparing to an abstraction in NCPO, but we could not find an example
where this is needed the setting of f7-long normal forms. More generally, Az.t >X g(u) can
only be a recursive comparison of f(A\z.ty,ta,...,t,) > g(u) for some f € F as 7(g(u)) € S.
If f 7 g then g can be discarded anyway, so we need g > # f which means that f is also a
small symbol. However, g >z f can only be enforced by a goal ¢g(v) > f(5) resolved with
CPO’s (Fs=) which requires g(v) >, s1. Since 7(g(v)) € S and 7(s1) = U — V, this is
impossible with the admissible type ordering from Lemma 4 which we implemented.

» Theorem 9. The pair (>1,3;) is a Bn-long normal higher-order reduction order.

A prototype implementation of NCPO-LNF is available at GitHub.! Table 1 compares
NCPO-LNF with NCPO and the state of the art higher-order termination tool WANDA [6]
on the small set of problems used in our original NCPO paper [9]. Here, v stands for a
successful termination proof and x denotes that termination could not be established. Note
that NCPO-LNF proves termination of the corresponding HRS while WANDA'’s soundness
is limited to PRSs and NCPO operates on a n-normal flavor of HRSs. Since HRSs are
restricted to rules operating on sorts, we have adapted [9, Example 6] accordingly which
explains why NCPO cannot handle it in contrast to our results reported in [9]. Overall, our
experimental results give evidence that NCPO-LNF performs slightly better than NCPO for
some interesting HRSs. In order to strengthen this evidence, NCPO and NCPO-LNF should
be evaluated on larger problem databases such as TPDB and COPS? in the future.

! https://github.com/niedjoh/hrsterm
2 https://ari-cops.uibk.ac.at/COPS
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