Sprachkonzepte der Parallelen Programmierung Vorlesung SS 11, WS 12, SS 13, WS 15–17

Johannes Waldmann, HTWK Leipzig

22. Januar 2018

1 Introduction

Sprachkonzepte der parallelen Programmierung

- programming language concepts for concurrent, distributed, and parallel computing
- why? 1. application requires it, 2. hardware allows it
- optional course for BSc. computer science students, in their 5th semester (of 6)
- each week (of 14): one lecture, one lab class (discussing homework, programming exercises)
- finally, written exams (closed book) 120 min

Concepts of Parallelism

- non-deterministic
 - concurrent (nebenläufig)
 interleaved execution of components
 - distributed (verteilt)
 as above, plus: explicit data transfer (messages)
 - e.g., responsive multi-user system requires concurrency (can be simulated on sequential hardware: OS)

deterministic

for application probl. without concurrency requirement, use hardware parallelism to solve them faster e.g., matrix multiplication, text/image analysis

From Concept to Implementation

notice the gap:

- quite often, we want deterministic parallelism
- but hardware is concurrent (e.g., several cores) and distributed (e.g., per-core memory/cache)

who bridges the gap?

- WRONG: the *programmer* (application program handles sequencing, synchronisation and messaging)
- RIGHT: the *language* (with libraries, compiler, run-time system) (program expresses intent)

note the difference between: $\sum_{0 \le i < n} x_i$ (intent) and: for (i=0; i<n; i++) {s+=x[i];} (sequencing)

Abstract! Abstract! Abstract!

main thesis

- *higher* abstraction level of the language
- \Rightarrow easier for compiler and RTS to use hardware specifics (e.g., parallelism) for efficient execution

example (C#, mono) just one annotation expresses the intent of parallel execution:

this is why we focus on functional programming (e.g., Select is a higher-order function)

Why did this work, exactly?

```
Enumerable.Range(...).AsParallel().Sum()
```

- technically, AsParallel() produces ParallelQuery<T> from IEnumerable<T>, and Sum() has a clever implementation for that type
- mathematically ("clever"), addition is *associative*, so we can group partial sums as needed
- if an operation is not associative? e.g., the final carry bit in addition of bitvectors then we should find a modification that is!

because that allows for *straightforward* and *adaptable* (e.g., to number of cores) parallelism

Types for Pure Computations

measure run-times and explain (C# vs. Haskell)

```
Enumerable.Range(0,1<<25).Select(bitcount).Sum()
Enumerable.Range(0,1<<25).Select(bitcount).Count()
Enumerable.Range(0,1<<25) .Count()
length $ map bitcount $ take (2^25) [ 0 .. ]
length $ take (2^25) [ 0 .. ]</pre>
```

- elements of list are not needed for counting
- computation of elements cannot be observed it has no side effects (Nebenwirkung) (this follows from bitcount:: Int -> Int)
 the Haskell RTS never calls bitcount,
- the C# type int->int includes side effects, so the RTS must call the function.

If we absolutely must program imperatively,

(imp. program execution = sequence of state changes)

- then we are on dangerous ground already for the sequential case proving an imperative program correct requires complicated machinery (Hoare calculus) hence it is often not done (for functional programs just use equational reasoning)
- we need even more caution (and discipline) for concurrent imperative programs need concurrency primitives

- that have clear semantics
- that solve typical problems
- that are composable (to larger programs)

Typical Concurrency Problems

- mutual exclusion
 at most one process gets to access a shared resource (e.g., a shared memory location)
- producers and consumers, readers and writers
 - cannot consume item before it is produced,
 - cannot consume item twice
- concurrent mutable data structures
 - counters
 - collections (hash maps, ...)

Semantics for Concurrent Systems

- ... via mathematical models:
- Petri nets (Carl Adam Petri, 1926–2010) (automata with distributed state)
- process algebra (Bergstra and Klop 1982, Hoare 1985)
 (regular process expressions and rewrite rules)

```
http://theory.stanford.edu/~rvg/process.html
```

• modal logic

```
(statements about time-dependent properties) application: model checking, e.g., SPIN http://spinroot.com/
```

Concurrency Primitives

- locks (Semaphores, E.W. Dijkstra 1974) http://www.cs.utexas.edu/users/ EWD/ewd00xx/EWD74.PDF of historical importance, but ... locks are bad (in particular, not composable)
- no locks atomic, non-blocking ("optimistic") execution of
 - elementary operations (compare-and-swap)
 realized in hardware http://stackoverflow.com/questions/151783/
 - transactions (STM, software transactional memory) http://research.microsoft.com/en-us/um/people/simonpj/papers/stm/ in Haskell, Clojure

Homework

- 1. which are associative? (give proof or counter-example)
 - (a) on \mathbb{Z} : multiplication, subtraction, exponentiation
 - (b) on \mathbb{B} (booleans): equivalence, antivalence, implication
 - (c) on \mathbb{N}^2 : $(a, b) \circ (c, d) := (a \cdot c, a \cdot d + b)$
- 2. sum-of-bitcounts
 - (a) re-do the C# bitcounting example in Java (hint: java.util.stream)
 - (b) discuss efficient implementation of int bitcount (int x); (hint: time/space trade-off)
 - (c) discuss efficient implementation of sum-of-bitcounts
 - i. from 0 to $2^e 1$
 - ii. bonus: from 0 to n-1 (arbitrary n)

hint:

how did little Carl Friedrich Gauß do the addition?

morale:

the computation in the example should never be done in real life, but it makes a perfect test-case since it keeps the CPU busy and we easily know the result.

- 3. sorting network exercise: https://autotool.imn.htwk-leipzig.de/new/aufgabe/2453
- 4. on your computer, install compilers/RTS for languages: Haskell (ghc), C# (mono), Java 8/9, Scala, Clojure, Go

or make sure that you can ssh to Z423/Z430 computers

2 Petri-Netze

Einleitung

- Verhalten nebenläufiger Systeme spezifizieren und modellieren
- Spezifikation (Beispiel): Spursprache (Menge der möglichen Reihenfolgen von atomaren Aktionen)
- Modell (Beispiel): Petri-Netz (nebenläufiger Automat) eingeführt von Carl Adam Petri, 1962

Vergleiche: Beschreibung/Modellierung sequentieller Systeme durch reguläre Sprachen/endliche Automaten

Vorgehen hier: erst konkrete Modelle, dann Spezifikationssprache (Logik).

Definition: Netz

Stellen/Transitions-Netz N = (S, T, F)

- S eine Menge von Stellen
- T eine Menge von Transitionen, $S \cap T = \emptyset$
- $F \subseteq (S \times T) \cup (T \times S)$ eine Menge von *Kanten*

das ist ein gerichteter bipartiter Graph

Bezeichnungen:

- Vorbereich (Eingänge) einer Transition: $Vor_N(t) = \{s \mid (s,t) \in F\}$
- Nachbereich (Ausgänge) einer Transition: Nach $_N(t) = \{s \mid (t,s) \in F\}.$

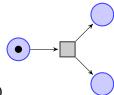
Zustände, Übergänge

- Zustand eines Netzes N ist Abbildung $z: S \to \mathbb{N}$ (für jede Stelle eine Anzahl von Marken)
- in Zustand z ist eine Transition t aktiviert, wenn jede Stelle ihres Vorbereiches wenigstens eine Marke enthält: $\forall s \in \mathsf{Vor}(t) : z(s) \geq 1$
- eine aktivierte Transition *schaltet*: verbraucht Marken im Vorbereich, erzeugt Marken im Nachbereich.
- Bezeichnung $z_1 \stackrel{t}{\to} z_2$: aus Zustand z_1 entsteht durch Schalten von t der Zust. z_2 .
- Def. $z_1 \xrightarrow{t} z_2$: erfordert 4 Fälle: alle Kombinationen von: $s \in \text{Vor}(t), s \notin \text{Vor}(t)$ mit $s \in \text{Nach}(t), s \notin \text{Nach}(t)$ effizientere Notation in Modell mit Kantengewichten.

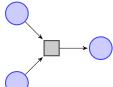
Petri-Netze modellieren...

• sequentielle Ausführung

• Auswahl (ein Zweig von mehreren)

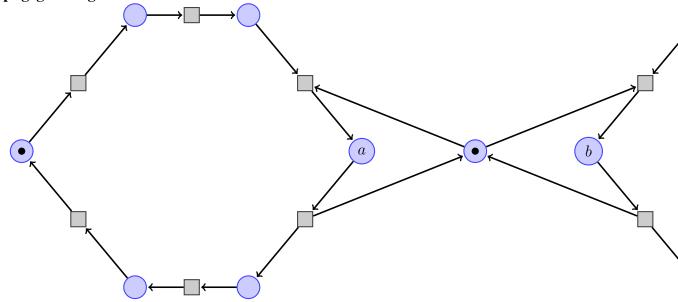


• nebenläufige Verzweigung (mehrere Zweige)



- Synchronisation
- Konflikte (gegenseitiger Ausschluß)

Bsp: gegenseitiger Ausschluß



Für jeden erreichbaren Zust. z gilt: $z(a) = 0 \lor z(b) = 0$.

Beispiel aus: Kastens und Kleine Büning: Modellierung, Hanser, 2008. http://www.

hanser-elibrary.com/isbn/9783446415379

Zeichnung mit TIKZ, vgl. http://www.texample.net/tikz/examples/nodetutorial/

Petri-Netze und UML

UML-2.5, Sect. 13.2.1

A variety of behavioral specification mechanisms are supported by UML, including:

- StateMachines that model finite automata (see C. 14)
- Activities defined using Petri-net-like graphs (see C. 15)
- Interactions that model partially-ordered sequences of event occurrences (see C. 17).

Sprache eines Netzes (I)

- Folge von Zuständen $z_0 \to_{t_1} z_1 \to_{t_2} z_2 \ldots \to_{t_k} z_k$ $Spur \ w = t_1 t_2 \ldots t_k \in T^*$, Notation $z_0 \to_w z_k$
- für gegebenes Netz N und Startzustand z_0 : Menge aller möglichen Spuren (Spursprache)

$$\operatorname{spur}(N, z_0) = \{ w \mid w \in T^* \land \exists z_k : z_0 \to_w z_k \}$$
 vergleiche: Sprache eines endlichen Automaten

• Def: L ist präfix-abgeschlossen : $\iff \forall w \in L : \forall u \sqsubseteq_{\text{prefix}} w : u \in L$ Satz: jede Spursprache ist präfix-abgeschlossen Bsp: $(ab)^*$ ist keine Petrinetz-Spursprache, aber $(ab)^*(a+\epsilon)$ ist eine PN-Spursprache.

Sprache eines Netzes (II)

• es gibt Petri-Netze mit komplizierten (= nicht regulären) Spursprachen

• Bsp:
$$N = \underbrace{ b } \underbrace{ t }, z_0 = \{(b,0)\}.$$
 Beispiele: $\epsilon, s, ss, st, sss, sst, sts, \ldots \in \operatorname{spur}(F, z_0), t, ts, stt \notin \operatorname{spur}(F, z_0).$ allgemein: $\operatorname{spur}(F, z_0) = \{w \mid \forall u \sqsubseteq w : |w|_s \ge |w|_t\}$ Satz: $\operatorname{spur}(F, z_0) \cap s^*t^* = \{s^xt^y \mid x \ge y\} \notin \operatorname{REG},$ Beweis mit Schleifensatz (pumping lemma). Diese Spursprache ist kontextfrei. (Nicht jede PN-Spursprache ist CF.)

Kapazitäten und -Schranken

Erweiterung:

• jede Kante bekommt eine *Gewicht* (eine positive Zahl), beschreibt die Anzahl der Marken, die bei jedem Schalten durch die Kante fließen sollen.

Einschränkung:

• Stellen können einer *Kapazität* bekommen (eine positive Zahl), beschreibt die maximal erlaubte Anzahl von Marken in dieser Stelle

falls alle Kapazitäten beschränkt \Rightarrow Zustandsmenge endlich (aber mglw. groß) \Rightarrow vollständige Analyse des Zustandsübergangsgraphen (prinzipiell) möglich

Formale Definition der Ü.-Relation

- Netz mit Kantengewichten: $F: (S \times T) \cup (T \times S) \rightarrow \mathbb{N}$
- Beziehung zu einfachem Modell:

keine Kante: Gewicht 0, einfache Kante: Gewicht 1

- Transition t ist in Zustand z aktiviert: $\forall s : z(s) \geq F(s,t)$.
- Zustandsübergang: $z_1 \stackrel{t}{\rightarrow} z_2$: $\forall s: z_1(s) - F(s,t) + F(t,s) = z_2(s)$
- beachte: durch *Verallgemeinerung* des Modells wird Notation hier *einfacher* . . . und damit auch Beweise, die Notation benutzen.

Bedingung/Ereignis-Netze

...erhält man aus allgemeinem Modell durch:

- jede Kante hat Gewicht 1
- jede Kapazität ist 1 (dadurch wird der Zustandsraum endlich!)

Beispiele:

- Ampelkreuzung
 (zwei Ampeln grün/gelb/rot, nicht gleichzeitig grün)
- speisende Philosophen
- Definition und Analyse von Lebendigkeit, Fairness

Eigenschaften von Petri-Netzen

Definitionen (für Netz N mit d Stellen, Zustand $m \in \mathbb{N}^d$)

- $M \subseteq \mathbb{N}^d$: Nachfolger $\mathsf{Post}_N(M) = \{y \mid m \in M, m \to_N y\}$
- Mehr-Schritt-Nachfolger: $\mathsf{Post}_N^*(M)$

Eigenschaften (Beispiele):

• Erreichbarkeit: gilt $m_0 \to_N^* m_1$?

- Beschränktheit: ist $\mathsf{Post}_N^*(m_0)$ endlich?
- Platz-Beschränktheit: $\{m(p) \mid m \in \mathsf{Post}_N^*(m_0)\}$ endlich?

Alain Finkel und Jerome Leroux: *Neue, einfache Algorithmen für Petri-Netze*, Informatik-Spektrum 3/2014, S. 229–236

Beschränktheit ist entscheidbar

 $\mathsf{Post}_N^*(m_0)$ endlich?

Entscheidungsverfahren: wir zählen abwechselnd auf:

- A: Elemente von $\mathsf{Post}^*(m_0)$ (z.B. Breitensuche)
- B: Kandidaten für Zeugen für Unbeschränktheit: Kandidat ist $(s,t) \in T^* \times T^+$, ist Zeuge, wenn $m_0 \to^s x \to^t y$ mit $x \leq y$ und $x \neq y$

zu zeigen ist: $\mathsf{Post}_N^*(m_0)$ unendlich \iff Zeuge existiert " \Leftarrow ": ist klar. Für " \Rightarrow ":

- \rightarrow auf Post* (m_0) ist unendlichen Baum endlichen Grades
- enthält unendlichen Pfad (Lemma von König)
- dieser Pfad enthält passendes (x, y) (Lemma v. Higman)

Lemma von Higman, WQO

- Def. eine Relation \leq auf M heißt WQO (wohl-quasi-Ordnung), falls gilt: es gibt keine unendliche \leq -Antikette.
- Def. eine Menge $A \subseteq M$ heißt Antikette, falls $\forall x, y \in A : x \neq y \Rightarrow x \nleq y$. (Def. . . . Kette, falls . . . $\Rightarrow x \leq y \lor y \leq x$.)
- Bsp: (\mathbb{N}, \leq) ist WQO. $(\mathbb{N}, |)$ (Teilbarkeit) ist ?
- Versionen von Higmans Lemma:

Satz: (\mathbb{N}^d, \leq) (komponentenweise \leq) ist WQO.

Satz: (Σ^*, \sqsubseteq) ist WQO, wobei $(u \sqsubseteq v) : \iff u$ entsteht aus v durch Löschen von Buchstaben

Aufgaben

- Vergleich Wechselschalter (Kastens/Kleine Büning Abb. 7.23) mit Netz aus Vorlesung
- Zustandsgraph (K/KB Aufg. 7.16)
- autotool-Aufgaben (reachability, deadlock)
- zu Petri-Netz für gegens. Ausschluß (Ampelsteuerung): formuliere eine Verschärfung der angegebenen Invariante, die man durch Induktion über Länge der Schaltfolge beweisen kann.
- Beispiele Petri-Netze zur Modellierung (Modell)eisenbahn:
 - Zug darf Streckenabschnitt nur befahren, wenn Signal grün zeigt
 - Zug darf Weiche nicht aus dem falschen Zweig befahren
- XOR-Verzweigung (mit späterer Zusammenführung) durch Petri-Netz ist einfach. Wie geht das für OR? (ein Zweig *oder beide* Zweige werden ausgeführt)
- Diskutiere, verallgemeinere, formalisiere diese Simulation einer Kapazitätsbeschränkung: http://www.texample.net/tikz/examples/nodetutorial/
- unendliche Antiketten für die Relationen
 - Teilbarkeit auf N
 - Teilwort-Relation \leq auf $\{a,b\}^*$, mit $u \leq v \iff \exists p,q: puq = v$
- möglichst große Antikette für (\mathbb{N}^2, \leq) , die (5,3) enthält.
- ... für (\mathbb{N}^3, \leq) an, die (5, 3, 1) enthält.

3 Spezifikation und Verifikation nebenläufiger Prozesse

Einleitung

wie überall,

- Trennung von Spezifikation und Implementierung
- jeweils ein mathematisches Modell

- Sätze über Eigenschaften, Beziehungen dieser Modelle
- Algorithmen zur Beantwortung der Frage: erfüllt die Implementierung die Spezifikation?

so auch hier:

- Spezifikation: PLTL (propositional linear time logic)
- Implementierung: Omega-Wörter, -Sprachen, -Automaten

Literatur

- Mordechai Ben-Ari: *Principles of Concurrent and Distributed Programming*, Prentice Hall 1990
- Beatrice Berard et al.: Systems and Software Verification, Springer 2001

erfordert eigentlich eine eigene Vorlesung, vergleiche

- Bertrand Meyer: Concepts of Concurrent Computation, http://se.inf.ethz.ch/courses/2012a_spring/ccc/
- Sibylle Schwarz: Verifikations- und Spezifikationsmethoden (Abschnitt 3: Model Checking) http://whz-cms-10.zw.fh-zwickau.de/sibsc/lehre/ws11/veri/

Kripke-Strukturen, Omega-Wörter

allgemein: Kripke-Struktur zu Variablenmenge V ist

- \bullet Graph (S,T) mit S= Menge der Systemzustände, $T\subseteq S\times S$ Menge der Zustandsübergänge
- Knotenbeschriftung $b: S \to (V \to \mathbb{B})$ d.h., b(s) ist eine Belegung der Variablen V

hier speziell:

- $S = \mathbb{N}$ (Zeitpunkte $0, 1, \ldots$)
- $T = \{(s, s+1) \mid s \in \mathbb{N}\}$ (linear time)

Beispiel:

- $V = \{p, q\},$
- $b(s) = \{(p, (s \ge 3)), (q, (2 \mid s))\}$

Omega-Wörter und -Sprachen

- jede lineare Kripke-Struktur über V entspricht einem unendlichen Wort über $\Sigma=2^V$ Bsp: $(0,1)(0,0)(0,1)(1,0)(1,1)(1,0)(1,1)\dots$
- ein unendliches Wort (Omega-Wort) über Σ ist eine Abbildung $\mathbb{N} \to \Sigma$
- $\, \Sigma^{\omega} \,$ bezeichnet die Menge aller Omega-Wörter über $\Sigma \,$
- Schreibweise für Omega-Wörter mit schließlich periodischer Struktur: (0,1)(0,0)(0,1) $((1,0)(1,1))^{\omega}$

vgl. unendl. Dezimalbrüche $3/22 = 0.1\overline{36}$

PLTL: propositional linear time logic

Syntax:

- Variablen p, q, \ldots , logische Operatoren $\neg, \lor, \land, \Rightarrow, \ldots$
- temporale Operatoren: immer \square , irgendwann \lozenge ,...

Beispiele: $\Diamond(p \lor q), \Box \Diamond p, \Diamond \Box p$

Semantik: Wert der Formel F in Struktur K zur Zeit s:

- für $v \in V$: wert $(v, K, s) = b_K(s)(v)$
- $\operatorname{wert}(F_1 \wedge F_2, K, s) = \min{\operatorname{wert}(F_1, K, s), \operatorname{wert}(F_2, K, s)}$
- $\operatorname{wert}(\Box F_1, K, s) = \min{\left\{\operatorname{wert}(F_1, K, s') \mid s' \in \mathbb{N}, s' \ge s\right\}}$
- $\operatorname{wert}(\Diamond F_1, K, s) = \max\{\operatorname{wert}(F_1, K, s') \mid s' \in \mathbb{N}, s' \ge s\}$

Übung: $\Diamond\Box\phi\Rightarrow\Box\Diamond\phi$ ist allgemeingülitg (gilt in jeder Struktur), . . . aber die Umkehrung nicht

PLTL-Spezifikationen von Systemeigenschaften

• gegenseitiger Ausschluß (mutual exclusion):

Variablen: $p_i := \text{Prozeß } i \text{ besitzt eine Ressource}$

- Spezifikation (2 Prozesse): $\Box \neg (p_1 \land p_2)$

- Übung: für 3 Prozesse lautet die Formel nicht $\Box \neg (p_1 \land p_2 \land p_3)$. Warum nicht? Wie dann?
- Fairness (kein Verhungern, no starvation)

Variablen: $A_i := \text{Prozeß } i \text{ beantragt Ressource; } P_i$ Spezifikation: $\square(A_1 \Rightarrow \lozenge P_1) \land \ldots \land \square(A_n \Rightarrow \lozenge P_n)$

PLTL: Algorithmen

Satz: die folgenden Fragen sind entscheidbar:

- Modell-Problem:
 - Eingaben: eine PLTL-Formel F über V, ein schließlich periodisches Wort $w \in \Sigma^\omega$ mit $\Sigma = \mathbb{B}^V$
 - Frage: gilt 1 = wert(F, w, 0)
- Erfüllbarkeits-Problem:
 - Eingabe: eine PLTL-Formel *F*
 - Frage: gibt es $w \in \Sigma^{\omega}$ mit 1 = wert(F, w, 0)

Beweis-Idee: die Mengen $\{w \in \Sigma^{\omega} \mid 1 = \text{wert}(F, w, 0)\}$ sind ω -regulär (Def. auf nächster Folie) und lassen sich durch endliche Automaten beschreiben. (J. R. Büchi 1962, A. Pnueli 1977)

ω -(reguläre) Sprachen

- Alphabet Σ ,
- ω -Wort $w \in \Sigma^{\omega}$: Abbildung $\mathbb{N} \to \Sigma$
- ω -Sprache $L \subseteq \Sigma^{\omega}$: Menge von ω -Wörtern
- ω -reguläres Wort: hat die Form $u \cdot v^{\omega}$ mit $v \neq \epsilon$.

Achtung: es gibt kein Produkt von ω -Wörtern, also auch keine geschachtelten Omegas.

• ω -reguläre Sprache:

beschrieben durch ω -regulären Ausdruck:

$$P_1 \cdot K_1^\omega \cup \ldots \cup P_n \cdot K_n^\omega \quad \text{ mit } P_i, K_i \text{ regul\"ar und} \neq \emptyset, \epsilon \notin K_i$$

Achtung: eine ω -reguläre Sprache (Bsp. $(a+b)^{\omega}$) kann auch nicht-reguläre ω -Wörter enthalten.

Übung PLTL

- Ist die Struktur $0(001)^{\omega}$ ein Modell der Formel $\Diamond \Box p$?
- Gibt es ein Modell für $\Box(p \iff \Diamond \neg p)$?
- Formalisieren Sie (mit den Variablen p_i für "Prozeß i besitzt Ressource")
 - F = Prozeß 1 besitzt die Ressource unendlich oft,
 - G =Prozesse 1 und 2 besitzen die Ressource nie gleichzeitig,
 - H = immer, wenn Prozeß 1 die Ressource besitzt, dann besitzt Prozeß 2 diese nicht, wird sie aber später erhalten.
- Für alle 8 Konjunktionen von $\{F, G, H, \neg F, \neg G, \neg H\}$: geben Sie jeweils ein Modell als ω -reguläres Wort an (falls möglich).
- durch die Operatoren
 - *F* ∪ *G*:

Es gibt einen Zeitpunkt, zu dem G gilt. Bis dahin gilt F.

– X F: im nächsten Zeitpunkt gilt F.

wird PLTL erweitert.

- Gegeben Sie die formale Semantik von U und X an.
- Wie kann man ♦ durch Until realisieren?
- Realisieren Sie Until durch Next (mit einer Hilfsvariablen p, die weder in F noch in G vorkommt)

$$p \leftrightarrow (F \cup G)$$
 gdw. $G \vee \dots$

Konkrete Syntax der PLTL-Operatoren

deutsch	Symbol	englisch	autotool	Spin
			NuSMV	
irgendwann	\Diamond	finally	F	<>
		(eventually)		
immer		globally	G	[]
		generally		
bis		until	U	U
nächster		next	X	Χ

Vergleich der PLTL-Operatoren

Ausdrucksstärke von PLTL(M) für $M \subseteq \{F, G, U, X\}$:

- PLTL(F, G) kann $(abc)^{\omega}$ nicht von $(acb)^{\omega}$ unterscheiden dabei ist a Abkürzung für $\{a=1,b=0,c=0\}$, usw.
- ... aber PLTL(U), durch $(a \cup b) \cup c$
- PLTL(F, G, U) kann $(ab)^{\omega}$ nicht von $(abb)^{\omega}$ unterscheiden,
- ... aber PLTL(X), durch ...?

4 Model-Checking mit NuSMV

Überblick

- http://nusmv.fbk.eu/
- Eingabe:
 - Zustands-Übergangs-System
 Bsp: init(p) := 0; next(p):= !p;
 - Spezifikation (LTL-Formel, Bsp: $\Box \Diamond p$, notiert als G F p)
- NuSMV kann
 - System simulieren (zufällig, benutzergesteuert)
 - Erfüllung der Spezifikation beweisen
 - für Nicht-Erfüllung einen Beweis (Spur) berechnen

NuSMV: Programm und Simulation

• Programm (beschreibt Zustands-Übergangs-Relation)

```
MODULE main
VAR p : boolean; q: boolean;
ASSIGN init (p) := FALSE;
   next(p) := !p; next(q) := {q,FALSE};
```

• interaktive Simulation (nusmv -int ex1.smv, dann)

```
NuSMV > go
NuSMV > pick_state -i
NuSMV > simulate -i
```

NuSMV: Spezifikation und Verifikation

• Programm mit Spezifikation

```
MODULE main
VAR p : boolean; q: boolean;
ASSIGN init (p) := FALSE;
   next(p) := !p; next(q) := {q,FALSE};
LTLSPEC F G p
```

• Verifikation: nusmv ex1.smv

```
-- specification F (Gp) is false

-- as demonstrated by the following execution sequence

Trace Description: LTL Counterexample

...
```

NuSMV: Modellierungssprache

- Zweck: Beschreibung der Zustands-Übergangs-Relation
- Datentypen: boolean,int, Aufzählungen,...
- Ausdrücke: ähnlich C, aber nebenwirkungsfrei
- Zustandsvariablen:

```
Deklaration: VAR p: {red, green};
Initialisierung: ASSIGN init(p) := green;
Zustandsübergänge
deterministisch next(p) := red;
nichtdeterministisch next(p) := {red, green};
```

bedingt:

next(q) := case p = red : TRUE esac;

NuSMV: Simulation Petrinetz

```
MODULE transition(vor,nach)
ASSIGN
  next (vor) :=
    case vor > 0 : vor - 1; TRUE : vor ; esac;
  next (nach) :=
    case vor > 0 & nach < 7 : nach + 1; TRUE : nach ; esac;
MODULE main
VAR s1 : 0 .. 7; s2 : 0 .. 7; s3 : 0 .. 7;
    t1 : process transition(s1, s2);
    t2 : process transition(s2, s1);
    t3 : process transition(s1, s3);
ASSIGN init (s1):=1; init(s2):=2; init (s3):=0;
LTLSPEC G s1 > 0;
```

Ü: überprüfe mit dieser Methode Eigenschaften von Petrinetzen aus Vorlesung (z.B. Ampelschaltung)

Entscheiden der PLTL-Erfüllbarkeit

- Beispiel: "gibt es ein Modell für $G(p \iff F \neg p)$ "?
- MODULE main VAR p : boolean;
 ASSIGN next(p) := {FALSE,TRUE};
 LTLSPEC ! G (p <-> F ! p)

Verifikation mit NuSMV liefert: spec. is true

• Antwort: Formel ist nicht erfüllbar. — Begründung:

- Spursprache ist $\{0,1\}^{\omega}$ (d.h. *alle* Wörter), wegen nichtdeterministischer Auswahl in jedem Schritt
- LTLSPEC ist die Negation der Formel ϕ aus der Aufgabenstellung. NuSMV beweist, daß diese in jeder Spur wahr ist, also ist ϕ für jede Spur falsch, also besitzt ϕ kein Modell.

NuSMV - build from source

```
falls Fehler
```

```
NuSMV-2.6.0/cudd-2.4.1.1/util/pipefork.c:46:16: error: storage size of 's
          union wait status;
dann in ändere in dieser Datei Zeile 43 zu
#if (defined __linux__) || (defined __hpux) || (defined __osf__) || (defined __osf__)
```

5 Nebenläufige Java-Programme

Threads erzeugen und starten

```
Thread-Objekt implementiert run(),
   diese Methode wird aufgerufen durch start(),
   das aber sofort zurückkehrt (mglw. bevor run() endet).

for (int t=0; t<8; t++) { new Thread() {
        public void run() {
            System.out.println (t);
        }
      }.start();
}
alternative Notation (Java ≥ 8)

new Thread( () -> System.out.println(t) );
```

Auf das Ende von Threads warten

```
t.join() blockiert aufrufenden Thread und kehrt erst zurück, wenn t beendet ist:
```

```
t1.start(); t2.start();
...
t1.join(); t2.join();
```

- das ist die einfachste Möglichkeit der Synchronisation, benutzt nur Threads selbst
- es gibt viele weitere Möglichkeiten, diese benutzen zusätzliche Objekte (Sperren)

Gemeinsamer Speicher

(Vorsicht, Code ist absichtlich falsch)

```
int s = 0; // gemeinsamer Speicher
// Threads erzeugen:
for (int t=0; t<threads; t++) {
  new Thread ( () ->
      { for (int i = 0; i<steps; i++) s++; });
// Threads starten: ...
// auf Threads warten: ...
System.out.println (s);</pre>
```

- Ausgabe ist i.A. deutlich kleiner als threads*steps.
- s++ ist nicht atomar
- tatsächlich wird noch viel weniger garantiert

Das Java-Speichermodell

• beschreibt garantiertes Verhalten beim Zugriff nebenläufiger Programme auf gemeinsamen Speicher

(Objekt-Attribute, Klassen-Attribute, Array-Inhalte)

- Definition: JLS Kap. 17.4 http://docs.oracle.com/javase/specs/jls/se9/html/jls-17.html#jls-17.4
- Erläuterungen: William Pugh: http://www.cs.umd.edu/~pugh/java/memoryModel/

Sequentielle Konsistenz (Plan)

- moderne Compiler und Hardware (Prozessoren/Caches)
 können elementare Anweisungen umordnen und verändern,
- wenn trotzdem das Ergebnis berechnet wird, das der Programmierer erwartet, nämlich das *ohne Umordnung*

- falls das so ist, heißt der Compiler sequentiell konsistent
- sequentielle Konsistenz gilt in Java innnerhalb jedes Threads, aber *nicht* zwischen Threads
- das Erreichen der gewünschten Konsistenz bleibt dem Programmierer überlassen (zu erreichen durch Sprache und Bibliotheken)

Beispiel Umordnung

```
vorher : A == 0; B == 0;
Thread 1: r2 = A; B = 1;
Thread 2: r1 = B; A = 2;
```

- Ist schließlich r1 == 1; r2 == 2 möglich?
- in NuSMV nicht (Ü: ausprobieren)
- in Java doch, denn . . .

Beispiel Code-Änderung

```
vorher: p == q und p.x == 0
Thread 2:
    r6=p; r6.x=3;
Thread 1:
    r1=p; r2=r1.x; r3=q; r4=r3.x; r5=r1.x;
```

- in r2, r4, r5 wird gleiche Stelle gelesen, wir erwarten Resultate 0, 0, 0 oder 0, 0, 3 oder 0, 3, 3 oder 3, 3, 3
- transformiere Code in Thread 1 zu

```
r1=p; r2=r1.x; r3=q; r4=r3.x; r5=r2;
```

dann ist Resultat 0, 3, 0 möglich.

Def. Speichermodell (Plan)

Merksatz:

• in sequentiellen Java-Programmen bestimmt die Programm-Ordnung die Ausführungsordnung

beides sind totale Ordnungen

• in nebenläufigen Java-Programmen *gibt es keine totale Ausführungsordnung* ... das Speichermodell definiert nur eine *partielle* "happens-before"-Halbordnung

Def. Speichermodell (Detail)

- (JLS 17.4.3) Programm-Ordnung (P.O.) (total je Thread, Quelltextreihenfolge der Aktionen)
- (.4) Synchronisations-Ordnung (S.O.) (total, auf bestimmten Aktionen: volatile-write/read, Thread-start, Beginn, Ende, join)
- (.4) synchronises-with (S.W.) (partiell) Schreiben auf volatile-Variable v S.W. jedem folgenden (bzgl. S.O.) Lesen von v
- (.5) *happens-before* (vereinfacht): (H.B.) transitive Hülle von (P.O. ∪ S.W.)
- jede well-formed (.7) und kausale (.8) Ausführung ist erlaubt.

Data Races

- Def: ein *data race* ist eine Menge von Zugriffen auf eine gemeinsame Variable (Speicherstelle), die durch *happens-before* nicht total geordnet ist.
- Def: ein *korrekt synchronisiertes* Programm ist ein Programm ohne *data races*.

volatile-Variablen

vereinfachtes Denkmodell

(= Veranschaulichung der happens-before-Relation)

- jeder Thread hat eine Kopie (einen Cache) der gemeinsamen Variablen (des Heaps)
- Synchronisation nur bei bestimmten Aktionen, u.a.

Benutzen von volatile deklarierten Variablen:

- beim Lesen ein *refresh* (Heap \rightarrow Cache)
- beim Schreiben ein *flush* (Cache \rightarrow Heap)

Thread-Verwaltung:

- start: refresh
- join: flush

Übung JMM

• Quelltexte aus VL: https://gitlab.imn.htwk-leipzig.de/waldmann/skpp-ws17

kw45/BC reparieren, ausprobieren, messen (auch andere Werte für threads/steps)

• Beispiele für totale und nicht totale Halbordnungen

Präfix-Ordnung auf Wörtern, lexikografische O. auf Wörtern, lex. O. auf Zahlenpaaren, komponentenweise O. auf Zahlenpaaren,

Def. komponentenweises Produkt von Relationen, lex. Produkt von Relationen.

- Funktionale Schnittstellen und Lambda-Ausdrücke in Java ≥ 8
 Notation, Benutzung, Typinferenz
- Beispiel aus Goetz: JCP, Abschn. 3.2

```
volatile
   boolean running = true;
Thread 1:
   while (running) { }
Thread 2:
   running = false;
```

(evtl. Thread.sleep (1000) benutzen) beobachte und diskutiere Verhalten mit und ohne volatile.

Beziehung zu Definition happens-before in JLS 17.4

weitere Beispiele für happens-before:
 finale und nicht finale Attribute bei Objektkonstruktion.

6 Semaphore und Monitore

Semaphore

(allgemeiner) Semaphor ist abstrakter Datentyp $\,$ mit Zustand $S \in \mathbb{N}$ und $\,$ atomaren Operationen:

- Wait (S): wenn S > 0 dann S := S 1, sonst blockiere
- Signal (S): wenn es Prozesse gibt, die auf S warten, dann wecke einen davon auf, sonst S:=S+1

```
Invariante: S = S_0 + \# \text{Signal} - \# \text{Wait} (\# \text{Wait} = \text{Anzahl der } abgeschlossenen \text{ Aufrufe von } \# \text{Wait}, \text{ entspr. für } \# \text{Signal}) Beweis der Invarianz: Induktionsanfang und 4 Fälle im Induktionsschritt
```

Semaphor: Geschichte

- E. W. Dijsktra: Cooperating Sequential Processes, 4. The General Semaphore, TU Eindhoven 1965 http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html
- J. B. Calvert: The Origin of the Railway Semaphore (Its evolution from the optical telegraph) http://mysite.du.edu/~jcalvert/railway/semaphor/semhist.htm
- Monty Python: Semaphore Version of Wuthering Heights

Gegenseitiger Ausschluß (grundsätzlich)

```
Semaphore s := 1;
Gemeinsame Ressource r;
Prozeß Nr i { non_critical_section;
```

```
Wait (s);
critical_section; // benutze r
Signal (s);
}
```

Eigenschaften:

- gegenseitiger Ausschluß
- fairness für 2 Prozesse
- $f\ddot{u}r \ge 3$ Prozesse nur *progress*
- fairness für ≥ 3 , wenn blockierte Prozesse in Queue (statt Menge) verwaltet werden

Gegenseitiger Ausschluß (Korrektheit)

Bezeichnungen:

- S: Zustand des Semaphors
- C: Anzahl der Prozesse in kritischem Abschnitt

Zeige Invariante: S + C = 1.

Beweis:

- C = #Wait #Signalt. Programmtext
- S = 1 + #Signal #Wait lt. Semaphor-Invariante

aus Invariante folgt Korrektheit ($C \le 1$)

Gegenseitiger Ausschluß in SMV

https://gitlab.imn.htwk-leipzig.de/waldmann/skpp-ws17/blob/master/kw46/semaphore.smv

formuliere und prüfe Bedingungen:

- Korrektheit (gegenseitiger Ausschluß)
 - G (! (proc1.state=have & proc2.state=have))
- Fairness?

Nein. Deswegen ist das keine korrekte Simulation eines Semaphors.

• Liveness?

Semaphore und Monitore

- Semaphore (ist Objekt)
 Aufgabe ist Synchronisation von Threads
- Monitor (ist Menge von Methoden)
 Aufgabe ist Zugriffskontrolle für Daten
- Monitor kann durch Semaphor realisiert werden:
 jeder Zugriff (jede Methode) muß Semaphor erwerben und wieder abgeben
- einfache Notation in Java durch synchronized

Monitore in Java

- die synchronized-Methoden einer Klasse C bilden für jedes Objekt von C einen Monitor
 (für jedes Objekt von C kann jederzeit höchstens eine Monitor-Methode laufen)
- diese Methoden sind re-entrant:
 während man eine Monitor-Methode ausführt, kann man weitere Methoden des gleichen Monitors aufrufen
 (deswegen funktioniert Implementierung mit Semaphor doch nicht diese würde verklemmen)
- Spezialfall: ein-elementiger Monitor: Code-Block

```
Object lock = new Object ();
synchronized (lock) { ... }
```

Explizites wait/notify für Monitore

- durch synchronized sind Erwerb und Freigabe der Sperre versteckt und automatisch richtig geschachtelt
- explizites Sperren und Freigeben sind auch möglich:

Methoden wait, notify, notifyAll:

```
synchronized void take (..) {
  while (taken) this.wait (); taken = true; }
synchronized void drop (..) {
  taken = false; this.notifyAll (); }
```

- Benutzung nur innerhalb eines Monitors,
- wait() in Schleife, siehe spurious wake-ups in http://docs.oracle.com/javase/8/docs/api/java/lang/Object. html#wait--

Beispiel: Philosophen in der Mensa

(Edsger Dijkstra, Tony Hoare, ca. 1965)

- Prozess = Philosoph
- gemeinsame Ressource = Gabel

gewünschte System-Eigenschaften:

- liveness (kein Verklemmen)
 die Folge der Aktionen ist unendlich
- fairness (kein Verhungern)

falls ein Prozeß eine Ressource anfordert, bekommt er sie nach endlich vielen Aktionen tatsächlich

Modellierung des Ressourcenzugriffs

Modellierung des ausschließlichen Ressourcenzugriffs:

```
class Fork {
   private boolean taken = false;
   synchronized void take () {
      while (taken) { this.wait (); }
      taken = true; }
   synchronized void drop () {
      taken = false; this.notifyAll (); } }
```

Q: warum wird expliziter Semaphor (wait/notify) benutzt?

A: jeder Prozeß (Philosoph) benötigt zwei Ressourcen (Gabeln) gleichzeitig, kann aber nicht zwei synchro- nized- Methoden gleichzeitig ausführen (kann die erste Gabel nicht festhalten, während die zweite geholt wird)

5 Philosophen

```
class Fork { void take() ; void drop () }
Philosoph i : new Thread () { void run () {
  while(true) { this.nachdenken();
    fork[i].take(); fork[i+1].take();
    this.essen();
    fork[i].drop(); fork[i+1].drop();
}} . start();
```

welche Eigenschaften? wie kann man das ggf. reparieren?

- global: progress oder deadlock?
- lokal: fairness?

Quelltexte: https://gitlab.imn.htwk-leipzig.de/waldmann/skpp-ws17

Übung Monitor

Verhalten dieses Programmes ausprobieren, diskutieren:

```
final Object lock = new Object();
Thread t = new Thread(() -> {
    synchronized (lock) { lock.wait(); } });
t.start();
synchronized (lock) { lock.notifyAll(); }
t.join();
```

Übung Dining Philosphers

Algorithmen implementieren und Eigenschaften (Liveness, Fairness) diskutieren/beweisen:

- Philosoph 0 ist Linkshänder
- ein Kellner (Platzanweiser), der immer nur maximal 4 Leute an den Tisch läßt

Realisierung des Modells

• in Java, in NuSMV, mit Petrinetz

Übung Binärer Semaphor

binärer Semaphor: $S \in \{0,1\}$ und ... Signal(S):...sonst S := 1 Simulation allgemeiner Semaphor durch binären Semaphor http://www.csc.uvic.ca/~mcheng/460/notes/gensem.pdf

- Warum ist Solution 1 falsch,
- worin besteht Unterschied zu Solution 2?

weiter Beispiele zu Semaphoren: Allen B. Downey: *The Little Book of Semaphores*, http://greenteapress.com/semaphores/downey08semaphores.pdf

7 Software Transactional Memory

Motivation/Plan

für nebenläufige Programme, die gemeinsamen Speicher benutzen:

- bisher: Synchronisation durch Sperren (locks) wesentlicher Nachteil: nicht modular
- jetzt: nichtblockierende Synchronisation

Quelle: Simon Peyton Jones: *Beautiful Concurrency*, = Kapitel 24 in: Andy Oram und Greg Wilson (Hrsg.): *Beautiful Code*, O'Reilly, 2007. http://research.microsoft.com/en-us/um/people/simonpj/papers/stm/

Beispiel: Kontoführung (I)

das ist das (bisher) naheliegende Modell:

Beispiel: Kontoführung (II) ist das eine Lösung?

Beispiel: Kontoführung (III)

wann funktioniert diese Lösung und wann nicht?

```
if (from < to) { from.lock(); to.lock() }
else { to.lock(); from.lock() }</pre>
```

Locks are Bad

- taking too few locks
- taking too many locks
- taking the wrong locks
- taking locks in the wrong order
- error recovery
- lost wakeups, erroneous retries

locks do not support modular programming

John Ousterhout: Why Threads are a Bad Idea (for most puroposes) USENIX 1996, https://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf

Speicher-Transaktionen (Benutzung)

```
from <- atomically $ newTVar 10 atomically $ do x <- readTVar from if x < a then retry else writeTVar from (x-a)
```

- Transaktions-Variablen
- Lese- und Schreibzugriffe nur innerhalb einer Transaktion Zugriff außerhalb ist
 - statischer (Typ-)Fehler in Haskell
 - Laufzeitfehler in Clojure
- Transaktion wird atomar und isoliert ausgeführt
 - atomar: findet komplett statt oder überhaupt nicht
 - isoliert:...http://blog.franslundberg.com/2013/12/acid-does-not-makehtml

Speicher-Transaktionen (Implementierung)

- während der Transaktion:
 Zugriffe (Schreiben und Lesen) in Log schreiben
- am Ende (commit): prüfen, ob Log konsistent mit aktuellem Speicherzustand ist konsistent := die während der Transaktion gelesenen Werte stimmen mit den aktuellen überein
- ... wenn ja, dann schreiben (atomar)
- ..., wenn nicht, dann Transaktion wiederholen
- ... bei Wert-Änderung einer der gelesenen Variablen

Einzelheiten, Erweiterungen: https://ghc.haskell.org/trac/ghc/wiki/ Commentary/Rts/STM

Deklaration von Nebenwirkungen in Typen

in Java (u.v.a.m.) ist der Typ nur ein Teil der Wahrheit:

```
public static int f (int x) {
   y++ ; new File ("/etc/passwd").delete();
   return x+1;
}
```

in Haskell: Typ zeigt mögliche Nebenwirkungen an. damit kann man trennen:

- Aktion (IO Int)
 von Resultat (Int)
- Aktion, die in Außenwelt sichtbar ist (IO Int) von Aktion, die in Transaktion erlaubt ist (STM Int)

Nebenwirkungen in Haskell: IO a

Werte:

```
4 :: Int ; "foo" ++ "bar" :: String
```

Aktionen mit Resultat und Nebenwirkung:

```
writeFile "foo.text" "bar" :: IO ()
readFile "foo.text" :: IO String
putStrLn (show 4) :: IO ()
```

Nacheinanderausführung von Aktionen:

```
do s <- readFile "foo.text"
   putStrln (show (length s))</pre>
```

Start einer Aktion: im Hauptprogramm

```
main :: IO ()
main = do ...
```

Nebenwirkungen auf den Speicher

```
import Data.IORef
data IORef a -- abstrakt
newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()
```

- damit kann man die üblichen imperativen Programme schreiben (jede Variable ist eine IORef)
- die Kombinatoren zur Programmablaufsteuerung kann man sich selbst bauen, z. B.

```
while :: IO Bool -> IO () -> IO ()
```

Übung: while implementieren, Fakultät ausrechnen

Transaktionen: STM a

jede Transaktion soll atomar sein

- ⇒ darf keine IO-Aktionen enthalten (da man deren Nebenwirkungen sofort beobachten kann)
- ⇒ neuer Typ STM a für Aktionen mit Nebenwirkungen *nur auf Transaktionsvaria-blen* TVar a

```
type Account = TVar Int
withdraw :: Account -> Int -> STM ()
withdraw account m = do
    balance <- readTVar account
    writeTVar account ( balance - m )
transfer :: Account -> Account -> Int -> IO ()
transfer from to m = atomically
    ( do withdraw from m ; deposit to m )
```

Bedingungen und Auswahl

- eine Transaktion abbrechen: retry
- eine Transaktion nur ausführen, wenn eine Bedingung wahr ist

```
check :: Bool -> STM ()
check b = if b then return () else retry
```

• eine Transaktion nur ausführen, wenn eine andere erfolglos ist: orElse

STM-Typen und -Operationen

```
(= Tab. 24-1 in Beautiful Concurrency)
  vgl. http://hackage.haskell.org/packages/archive/stm/2.2.0.
1/doc/html/Control-Monad-STM.html
```

8 STM - Beispiele, Übungen

The Santa Claus Problem

Santa repeatedly sleeps until wakened by either all of his nine reindeer, back from their holidays, or by a group of three of his ten elves. If awakened by the reindeer, he harnesses each of them to his sleigh, delivers toys with them and finally unharnesses them (allowing them to go off on holiday). If awakened by a group of elves, he shows each of the group into his study, consults with them on toy R&D and finally shows them each out (allowing them to go back to work). Santa should give priority to the reindeer in the case that there is both a group of elves and a group of reindeer waiting. J. A. Trono: *A new Exercise in Concurrency*, SIGCSE Bull. 26, 1994.

Lösung mit STM in Peyton Jones: Beautiful Concurrency, 2007

Philosophen mit STM

```
forM [ 1 .. num ] $ \ p -> forkIO $ forever $ do
    atomically $ do
        take $ left p; take $ right p
    atomically $ drop $ left p
    atomically $ drop $ right p

take f = do
    busy <- readTVar f
    when busy $ retry
    writeTVar f True</pre>
```

kein Deadlock (trivial). — nicht fair, siehe http://thread.gmane.org/gmane.comp.
lang.haskell.parallel/305

Quelltexte: https://gitlab.imn.htwk-leipzig.de/waldmann/skpp-ws17

Übung STM

• ein Haskell-Hauptprogramm schreiben,

```
main :: IO ()
main = do putStrLn "hello world"
```

kompilieren, ausführen (Optionen sind hier nicht nötig, aber später)

```
ghc -threaded -rtsopts -02 Main.hs
./Main +RTS -N
```

- dining philosophers in Haskell, in https://gitlab.imn.htwk-leipzig.de/waldmann/skpp-ws17, kompilieren, ausführen. Diskutiere https://mail.haskell.org/pipermail/haskell-cafe/2015-November/122233.html Was passiert bei if p > 1 then ...?
- Nach Aktivieren der Anweisung

```
hSetBuffering stdout NoBuffering
```

wird deutlich, daß der gemeinsame Zugriff der Philosophen auf stdout (in putStrln) ebenfalls eine Konfliktquelle ist.

Lösen Sie dieses Problem durch einen weiteren Thread. Nur dieser darf putStrln ausführen, die anderen müssen ihm das mitteilen. Benutzen Sie dazu TVar String (Inhalt der Ausgabe) und TVar Bool (Anforderung/Freigabe).

- Cigarette smokers problem (Allen B. Downey: The Little Book of Semaphores, http://greenteapress.com/semaphores/LittleBookOfSemaphores.pdf, Abschnitt 4.5) Diskutiere Deadlock in Semaphor-Lösung, schreibe (triviale) STM-Lösung.
- ggf. STM-Test mit dejafu https://mail.haskell.org/pipermail/haskell-cafe/2015-November/122224.html

STM in Clojure (Beispiele)

Clojure = LISP für JVM

```
(def foo (ref "bar")) -- newTVar

(deref foo) -- readTVar
@foo

(ref-set foo "oof") -- writeTVar
(dosync (ref-set foo "oof"))
```

Quellen:

- Kap. 6 *Concurrency* aus: Stuart Halloway, *Programming Clojure*, Pragmatic Bookshelf, 2009;
- http://clojure.org/refs

STM in Clojure (Sicherheit)

Transaktionsvariablen ohne Transaktion benutzen:

- Haskell: statischer Typfehler
- Clojure: Laufzeitfehler

IO innerhalb einer Transaktion:

- Haskell: statischer Typfehler
- Clojure: "I/O and other activities with side-effects should be avoided in transaction..."

Übung: ein Programm konstruieren, bei dem eine IO-Aktion innerhalb einer Transaktion stattfindet, aber die Transaktion nicht erfolgreich ist.

Transaktion mit Nebenwirkung

Transaktionen:

```
(def base 100)
(def source (ref (* base base)))
(def target (ref 0))
(defn move [foo]
    (dotimes [x base]
        (dosync (ref-set source (- @source 1))
        (ref-set target (+ @target 1))) ))
(def movers (for [x (range 1 base)] (agent nil)))
(dorun (map #(send-off % move) movers))
```

Nebenwirkung einbauen:

```
(def c (atom 0)) ... (swap! c inc) ...
(printf c)
```

STM und persistente Datenstrukturen

"The Clojure MVCC STM is designed to work with the persistent collections, and it is strongly recommended that you use the Clojure collections as the values of your Refs. Since all work done in an STM transaction is speculative, it is imperative that there be a low cost to making copies and modifications."

"The values placed in Refs must be, or be considered, immutable!!" Beispiel Suchbäume:

- destruktiv: Kind-Zeiger der Knoten verbiegen,
- persistent: neue Knoten anlegen.

Bsp: persistenter Suchbaum in Haskell

9 Nicht blockierende Synchronsiation

Einleitung

Synchronisation (geordneter Zugriff auf gemeinsame Ressourcen) durch

- explizite Sperren (lock)
 pessimistische Ausführung
 Gefahr von Deadlock, Livelock, Prioritätsumkehr
- ohne Sperren (lock-free)
 optimistische Ausführung
 ein Prozeß ist erfolgreich (andere müssen wiederholen)
 - nur feingranular (AtomicLong, compareAndSet())
 - atomare zusammengesetze Transaktionen

Literatur

- Atomic Variables and Nonblocking Synchronization, Kapitel 15 in Brian Goetz et al.: Java Concurrency in Practice
- Counting, Sorting and Distributed Coordination, Kapitel 12 in Maurice Herlihy and Nir Shavit: The Art of Multiprocessor Programming
- Which CPU architectures support Compare And Swap (CAS)?

http://stackoverflow.com/questions/151783/

Compare-and-Set (Benutzung)

Der Inhalt einer Variablen soll um 1 erhöht werden.

Mit STM wäre es leicht:

```
atomically $ do v \leftarrow readTVar p ; writeTVar p $! (v+1)
```

ohne STM, mit einfachen atomaren Transaktionen:

```
AtomicInteger p; boolean ok;
do { int v = p.get();
    ok = p.compareAndSet(v,v+1);
} while ( ! ok);
```

- Vorteil: das geht schnell (evtl. sogar in Hardware)
- Nachteil: nicht modular (keine längeren Transaktionen)
- Auswirkung: kompliziertere Algorithmen

Compare-and-Set (Implementierung)

Modell der Implementierung:

```
class AtomicInteger { private int value;
  synchronized int get () { return value; }
  synchronized boolean
    compareAndSet (int expected, int update) {
      if (value == expected) {
        value = update ; return true;
      } else {
        return false; } }
}
```

moderne CPUs haben CAS (oder Äquivalent) im Befehlssatz (Ü: suche Beispiele in x86-Assembler)

JVM (ab 5.0) hat CAS für Atomic{Integer,Long,Reference}

Compare-and-Set (JVM)

Assembler-Ausgabe (des JIT-Compilers der JVM):

```
javac CAS.java
java -Xcomp -XX:+UnlockDiagnosticVMOptions -XX:+PrintAssembly CAS
```

Vorsicht, Ausgabe ist groß. Mit nohup in Datei umleiten, nach AtomicInteger::compareAndSet suchen.

Non-Blocking Stack

Anwendung: Scheduling-Algorithmen:

(jeder Thread hat Stack mit Aufgaben, andere Threads können dort Aufgaben hinzufügen und entfernen)

Spezifikation f. Concurrent Stacks

Stack-spezifisch:

• correct set semantics

allgemein:

- linearizability
- lock-free (lebendig), wait-free (fair)

vgl. Hendler, Shavit, Yerushalmi: A Scalable Lock-free Stack Algorithm (Sect. 5) (16th ACM Symp. on Parallelism in Algorithms and Architectures) http://www.cs.bgu.ac.il/~hendlerd/papers/scalable-stack.pdf

Abstraktion, Linearisierbarkeit

- \bullet nebenläufige Implementierung N einer Datenstrukturspezifikation P
- mit abstraction map a von N zu einer sequentiellen Implementierung S
- N heißt linearisierbar, falls es für jede nebenläufige Ausführung von N eine Folge von $Linearisierungpunkten <math>n_1, n_2, \ldots$ gibt,

```
so daß a(n_1), a(n_2), \ldots eine P-korrekte Ausführung von S ist.
```

vgl. Shavit: Art of Multiproc. Prog. Sect. 9.3 Concurrent Reasoning

Non-Blocking Queue (Problem)

• einfach verkettete Liste

```
private static class Node<E> {
    E item; AtomicReference<Node<E>> next; }
```

• Zeiger head, tail auf Anfang/Ende, benutze Sentinel (leerer Startknoten)

Auslesen (am Anfang) ist leicht, Problem beim Einfügen (am Ende):

- zwei Zeiger next und tail müssen geändert werden,
- aber wir wollen keinen Lock benutzen.

Non-Blocking Queue (Lösung)

(Michael and Scott, 1996) http://www.cs.rochester.edu/research/synchronization/pseudocode/queues.html

Idee: die zwei zusammengehörigen Änderungen mglw. durch verschiedene Threads ausführen (!)

Queue hat zwei Zustände:

- A: tail zeigt auf letzten Knoten
- B: tail zeigt auf vorletzten Knoten

wer B bemerkt, muß reparieren.

in Java realisiert als ConcurrentLinkedQueue

Non-Blocking Übung

- Simulation von CAS durch STM
- CAS-Maschinenbefehle in JVM-Assemblercode
- Messungen für Zähler mit CAS, mit synchronized
- Testfälle für nebenläufige Stacks/Queues
- push/pop für non-blocking Stack
- enqueue/dequeue für non-blocking Queue

10 Lokale Prozeßkommunikation (I)

Motivation

bisher betrachtete Modelle zur Thread-Kommunikation:

- Datenaustausch über gemeinsamen Speicher
- Synchronisation durch Locks, Transaktionen

jetzt:

- kein gemeinsamer Speicher
- Datentransport durch Nachrichten
- dabei ggf. Synchronisation

Beispiel: Rendezvous (Ada), Actors (Scala), Channels (Go)

Communicating Sequential Processes (CSP)

- abstraktes Modell für Kommunikation von Prozessen
- Abstraktion: (endliches) Alphabet von (einfachen) Nachrichten, synchrone Kommunikation
- entwickelt 1978 von C. A. R. Hoare

http://research.microsoft.com/en-us/people/thoare/

• Grundlage für Prozeßmodell in Occam, Ada, Go, ...

CSP: Syntax

E ist eine Menge von Ereignissen Die Menge $\mathbb{P}(E)$ der Prozesse über E definiert durch:

- STOP $\in \mathbb{P}$,
- $\bullet \ \ \text{wenn} \ e \in E \ \text{und} \ P \in \mathbb{P}, \ \text{dann} \ (e \to P) \in \mathbb{P}$
- wenn $P_1, P_2 \in \mathbb{P}$, dann sind in \mathbb{P} :
 - Nacheinanderausführung: P_1 ; P_2
 - Auswahl, intern: $P_1 \sqcap P_2$, extern: $P_1 \square P_2$
 - nebenläufige Ausführung mit Kommunikationsalphabet $C \subseteq E$: $P_1 \parallel_C P_2$
- Wiederholung: $P_1^* \in \mathbb{P}$

CSP: Semantik

Semantik eines Prozesses $P \in \mathbb{P}(E)$ definiert durch:

- ullet Definition des Zustandsübergangs-Systems A(P)
 - endlicher Automat mit Alphabet E und ϵ -Übergängen
 - Zustände sind Prozesse (d.h. Terme)
 - P ist initial, alle Zustände sind final (akzeptierend)
 - Übergänge beschrieben durch Term-Ersetzungs-Regeln
- ullet Definition der Semantik von A(P), zwei Möglichkeiten:
 - die Spur-Semantik (= die Sprache von A(P))
 - die Ablehnungs-Semantik

CSP: von Prozess zu Automat

Übergangsrelation von A(P) definiert durch Regeln zu

• Nacheinanderausführung:

$$-(a \to P) \stackrel{a}{\to} P$$

- (STOP;
$$Q$$
) $\stackrel{\epsilon}{\rightarrow} Q$,

- wenn
$$P \stackrel{a}{\to} P'$$
, dann $(P; Q) \stackrel{a}{\to} (P'; Q)$,

(vgl. Nil, Cons, Append für Listen)

• Wiederholung:

-
$$P^* \xrightarrow{\epsilon} STOP$$
, $P^* \xrightarrow{\epsilon} (P; P^*)$.

(vgl. Kleene-Hülle als Sprachoperation)

• sowie (nächste Folien) Kommunikation, Verzweigung

Regeln zur Kommunikation

das Ereignis gehört zum Kommunikations-Alphabet: beide Prozesse führen es gemeinsam (synchron) aus

•
$$a \in C \land P \xrightarrow{a} P' \land Q \xrightarrow{a} Q' \Rightarrow (P||_C Q) \xrightarrow{a} (P'||_C Q'),$$

das Ereignis gehört nicht zum Kommunikations-Alphabet oder ist ein ϵ -Übergang: einer der beiden Prozesse führt es aus (der andere wartet)

•
$$(a = \epsilon \lor a \in E \setminus C) \land P \xrightarrow{a} P' \Rightarrow (P||_C Q) \xrightarrow{a} (P'||_C Q),$$

•
$$(a = \epsilon \lor a \in E \setminus C) \land Q \xrightarrow{a} Q' \Rightarrow (P||_C Q) \xrightarrow{a} (P||_C Q'),$$

definiert *synchrone* Kommunikation, realisiert u.a. in Ada (Rendezvous), Scala (Operation !?), Go (Kanal mit Kapazität 0).

Regeln für Auswahloperatoren

• interne Auswahl (Nichtdeterminismus)

$$P \sqcap Q \xrightarrow{\epsilon} P$$
, $P \sqcap Q \xrightarrow{\epsilon} Q$.

• externe Auswahl

$$P \overset{a}{\to} P' \Rightarrow (P \square Q) \overset{a}{\to} P', \quad Q \overset{a}{\to} Q' \Rightarrow (P \square Q) \overset{a}{\to} Q'.$$

Beispiel: (mit verkürzter Notation a für $a \to STOP$)

•
$$P_1 = (a \sqcap b)$$
: $A(P_1) = \text{STOP} \stackrel{b}{\leftarrow} b \stackrel{\epsilon}{\leftarrow} P_1 \stackrel{\epsilon}{\rightarrow} a \stackrel{a}{\rightarrow} \text{STOP}$

•
$$P_2 = (a \square b)$$
: $A(P_2) = \text{STOP} \stackrel{b}{\leftarrow} P_2 \stackrel{a}{\rightarrow} \text{STOP}$

diese Automaten sind verschieden, aber die Sprachen stimmen überein.

Verschiedene Prozeß-Semantiken

• Spur-Semantik:

Menge der (unvollständigen) Spuren (partial traces) (jeder Automatenzustand ist akzeptierend) gestattet keine Beschreibung von Verklemmungen (deadlocks), keine Unterscheidung von interner und externer Auswahl, deswegen

• Ablehnungs-Semantik

zur genaueren Beschreibung des Prozeßverhaltens

Bemerkung: wenn man das nicht klar definiert, dann beginnt das große Rätselraten darüber, was Nichtdeterminismus für Prozesse bedeuten soll,

```
vgl. http://lambda-the-ultimate.org/node/4689
```

Ablehnungs-Semantik

Ab-Semantik eines Prozesses ist Menge von Paaren von

- partieller Spur $s \in E^*$
- und Folge-Menge $F \subseteq E$ (mögliche nächste Ereignisse)

$$(s,F) \in \mathsf{Ab}(P) : \iff \exists Q : P \xrightarrow{s} Q \land F = \{e \mid \exists R : Q \xrightarrow{e} R\}.$$
 Beispiel: Ab-Semantik ist genauer als Sp-Semantik:

- $\operatorname{Sem}_{\operatorname{Sp}}(b \square c) = \operatorname{Sem}_{\operatorname{Sp}}(b \sqcap c) = \{\epsilon, b, c\}$
- Sem_{Ab} $(b \square c) = \{(\epsilon, \{b, c\}), (b, \emptyset), (c, \emptyset)\}$
- Sem_{Ab} $(b \sqcap c) = \{(\epsilon, \{b, c\}), (\epsilon, \{b\}), (b, \emptyset), (\epsilon, \{c\}), (c, \emptyset)\}$

Rendez-Vous (I) in Ada

```
task body Server is
   Sum : Integer := 0;
begin loop
      accept Foo (Item : in Integer)
        do Sum := Sum + Item; end Foo;
      accept Bar (Item : out Integer)
        do Item := Sum; end Bar;
   end loop;
```

```
end Server;
A: Server; B: Integer;
begin
   A.Foo (4); A.Bar (B); A.Foo (5); A.Bar (B);
end B;
```

Rendezvous (II)

- ein Prozeß (Server) führt accept aus, anderer Prozeß (Client) führt Aufruf aus.
- beide Partner müssen aufeinander warten
- accept Foo (..) do .. end Foo ist atomar

Rendezvous (III)

allgemeinere Formen von accept:

http://en.wikibooks.org/wiki/Ada_Programming/Tasking http://www.adaic.org/resources/add_content/standards/05aarm/html/AA-9-7-1.html

11 Lokale Prozeßkommunikation (II)

Kommunikations-Kanäle

zur asynchronen Kommunikation (Eigenschaften: vgl. Postbrief statt Rendezvous)

- Kapazität des Kanals/Briefkastens (Kapazität 0 ⇒ Rendezvous)
- Ordnung der Nachrichten (FIFO oder ungeordnet)
- Typisierung der Nachrichten

```
Bsp. in Go: (http://golang.org)
ch := make (chan int) // anlegen
ch <- 41 // schreiben
x := <- ch // lesen</pre>
```

Kanäle in Haskell

Kanal ist typisiert, FIFO, unbeschränkt.

```
data Chan a -- abstrakt
newChan :: IO (Chan a)
writeChan ::
readChan ::
```

Dok.: http://www.haskell.org/ghc/docs/latest/html/libraries/base/Control-Concurrent-Chan.html

Übungen

- Implementierung ansehen
- Anwendung: Aufsammeln von Teilergebnissen
- Anwendung: Mergesort in Aktor-Style
- vergleiche mit Control.Concurrent.STM.TChan

Haskell: MVar

ist Kanal der Kapazität 1

```
data MVar a = ...

takeMVar :: MVar a -> IO a
-- blockiert, wenn leer

putMVar :: MVar a -> a -> IO ()
-- blockiert, wenn voll
```

Actors (Scala)

- Briefkasten ist nicht typisiert
- Nachrichten sind typisiert

```
http://www.scala-lang.org/node/242

object Stop
class Server extends Actor { def act() {
   var running = true;
   while (running) { receive {
      case x : Int => println(x)
      case Stop => running = false; } } } }

var s = new Server()
s.start ; s ! 42 ; s ! Stop
```

Good Actors Style

Kap. 30.5 in: Odersky, Spoon, Villers: Programming in Scala, Artima 2007,

- ein Aktor soll nicht blockieren
 - ... sondern lieber Arbeit an andere Aktoren weitergeben
- kommuniziere mit Aktoren nur durch Nachrichten
 - ... und nicht durch gemeinsame Variablen
- Nachrichten sollten *immutable* sein
 - ... sonst Gefahr von inkonsistenten Daten
- Nachrichten sollten self-contained sein
 - ...damit der Aktor nicht nachfragen muß

unveränderliche Objekte kann man billig mitschicken

Rendezvous-Zusammenfassung

- unmittelbar synchron, kein Puffer:
 - Ada-Rendezvous (task entry call/accept)

```
- Go: ch = make(chan int); ch <- ..; .. <- ch
- Scala: Actor a; ... = a!? msq</pre>
```

- gepuffert synchron (Nachrichten der Reihe nach)
 - beschränkte Kapazität:

```
Go: make (chan int, 10) java.util.concurrent.LinkedBlockingQueue
```

- unbeschränkt:

Haskell: Control.Concurrent.newChan

• asynchron Scala: Actor a ; ... = a ! msg

Übung: Kanäle in Go

Sprachdefinition: http://golang.org/
Compiler/Runtime:

- google: go run hello.go
- gcc: gcc-go -o hello hello.go ; ./hello

Kanäle:

- Syntax (Deklaration, Benutzung)
- Kapazität
- Schließen von Kanälen

Übung:

- berechne Summe der Bitcounts von 0 bis $2^n 1$
- verteile Rechnung auf p Prozesse

Futures in Java

submit startet eine asynchrone Berechnung, get ist der blockierende Zugriff auf das Resultat.

Implementierung könnte einen Kanal benutzen (die Rechnung schreibt, get liest)

```
package java.util.concurrent;
interface Callable<R> { R call() }
interface ExecutorService {
```

```
<R> Future<R> submit (Callable<R>)
  void shutdown() }
interface Future<R> { R get() }
class Executors {
  ExecutorService newFixedThreadPool(int) }
```

Ü: Bitcount-Summation. Stream<Future<Integer>>

12 Paralleles Sortieren

Einleitung

- VL SKPP: über Sprachkonzepte, nicht über Algorithmen
- trotzdem an einem Beispiel Zusammenhänge zeigen
- Sortieren ist der Standard-Testfall für Algorithmen-Entwurf und -Analyse (vgl. 2. Semester)
- aber wer tatsächlich sortiert, macht etwas falsch (hat die falsche Datenstruktur gewählt Liste oder Array statt balancierter Baum)
- wer Sortieren auch noch selbst implementiert, macht es erst recht falsch (sollte Standardbibliotheken verwenden)
- ... außer: der Kandidat ist Student und soll etwas lernen

Kostenmodelle für parallele Alg.

- Datenabhängigkeitsgraph für (sequentiellen oder funktionalen) Algorithmus in single-assignment-Form int f(int x) {a=x; a=a+3; b=x*5; return a+b;}
 - \Rightarrow i f(i x) {a0=x; a1=a0+3; b0=x*5; return a1+b0;}
 - Knoten: Variablen (benutzte Speicherstellen)
 - Kanten: $\{x \to a_0, a_0 \to a_1, x \to b_0, a_1 \to r, b_0 \to r\}$
- interessante Maße sind:
 - work (Anzahl aller Operationen, d.h. Knoten) (Bsp: 4)
 - depth/span (Länge eines längsten Weges) (Bsp: 3)

span ist Laufzeit bei bestmöglicher Parallelisierung

• vgl. Guy Blelloch (http://www.cs.cmu.edu/~guyb/): Parallel Thinking (PPoPP 2009) u.ä.

Work und Span für einfache Sortierverfahren

- Auswählen: bestimme Index für Minimum $a[1 \dots n]$
 - sequentielle Implementierung: work = span = n
 - balancierter Baum: work = n, span = $\log n$
- Sortieren durch Auswählen:

```
for i from 1 to n - 1:

m := Index f \ddot{u}r minimum (a[i .. n]); a[i] <-> a[m]
```

- sequentielle Implementierung: work = span = n^2
- mit balanciertem Auswählen: work = n^2 , span = $n \log n$.
- Merge-Sort? span(sort) = $\log n \cdot \text{span(merge)}$ aber span(merge) = n bei sequentieller Impl.

Massiv paralleles Sortieren

```
for i, j :
  boolean c[i, j] := (a[i] < a[j])
for j :
  out[j] := a[sum (c[1, j] .. c[n, j])]</pre>
```

- korrekt?(falls Elemente von a paarweise verschieden sind)
- work?
- span?
- praktisch?

Sortiernetze

- elementarer Baustein: *Komparator* Eingänge x, y, Ausgänge $\max(x, y), \min(x, y)$
- Sortierverfahren (für Eingabebreite n)
 Anordnung (Netz, azyklischer Graph, Schaltkreis) von Komparatoren
- unabhängige Komparatoren können parallel arbeiten
- Programm-Ablauf hängt nur von n ab, nicht von Daten. solche Programme heißen data oblivious
- Ziel: Merge-Sort, dabei Merge mit span $\log n$

Konkrete Sortiernetze geringer Breite

- n = 1
- n = 2
- n = 3
- n = 4?
- n = 8?

Das 0-1-Prinzip

- Satz: Netz N sortiert *alle* Eingaben aus \mathbb{N}^n $\iff N$ sortiert alle Eingaben aus $\{0,1\}^n$
- Beweis (⇐)

```
falls Eingabe \vec{x} = [x_1, \dots, x_n] \in \mathbb{N}^n falsch behandelt, dann Ausgabe \vec{y} = [y_1, \dots, y_n] mit i < j und y_i > y_j. betrachte f: a \mapsto if a > y_j then 1 else 0 f ist monoton, also schalten Komparatoren bei Eingabe \vec{x} genauso wie bei f(\vec{x}). also entsteht Ausgabe [\dots, 1, \dots, 0, \dots].
```

Odd-Even-Merge

- M_n : Merge-Netz für n+n Eingaben. Spezifikation: Falls \vec{x} monoton und \vec{y} monoton, dann $M_n(\vec{x}, \vec{y})$ monoton.
- M_1 ?, M_2 ?, M_{2n} aus M_n ?
- $M_{2n}(x,y) = M_n(\operatorname{odd}(x),\operatorname{odd}(y)); M_n(\operatorname{even}(x),\operatorname{even}(y)); \dots$
- Ergänze (zunächst für Bsp n = 2, dann allgemein)
- Beweise mit 0-1-Prinzip
- work, span für Merge? für Sort?
- das so konstruierte 8-Sortiernetz ist optimal
- Ü: Implem.? (1. konstruieren, 2. effizient ausführen)
- Ü: Merge für andere Eingabebreiten, z.B. $M_{3,4}$

13 Verteiltes Zählen

Motivation

Motivation: zentrale Ausgabe von Tickets (mit eindeutigen und aufsteigenden Nummern).

mit höherem Durchsatz als mit einen zentralen Zähler

```
class Counter { int count;
synchronized int next () { return count++;}}

James Aspnes, Maurice Herlihy, and Nir Shavit.
Counting networks, JACM 41(5):1020-1048, Sept. 1994
http://www.cs.yale.edu/homes/aspnes/papers/ahs-abstract.html
wesentlicher Baustein: AtomicBoolean.negate()
```

Spezifikation für Zählnetze

korrekte Behandlung der Token:

 \bullet Netzwerk mit n Eingängen, n Ausgängen, Tiefe d

ullet jedes Token, das einen Eingang betritt, verläßt das Netzwerk nach $\leq d$ Schritten an einem Ausgang

(das Netzwerk vergißt und erfindet keine Token)

gute Verteilung der Token:

- (informal) bei *beliebiger* Verteilung der Token auf die Eingänge: jeder Ausgang wird (etwa) *gleich oft* benutzt.
- (formal) betrachte Anzahlen $[x_1, \ldots, x_n]$ der Token je Eingang, Anzahlen $[y_1, \ldots, y_n]$ der Token je Ausgang;

im Ruhezustand
$$(\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i)$$
 soll gelten: $[y_1, \dots, y_n]$ ist Schrittfolge: $y_1 \ge \dots \ge y_n \ge y_1 - 1$

Folgerung aus Spezifikation für Zählnetze

Satz: für jedes $n > 0, S \ge 0$ gibt es genau eine Schrittfolge $[z_1, \ldots, z_n]$ mit $S = \sum z_i$.

Satz: für jeden Zustand jedes Zählnetzes gilt:

- wenn $\sum x_i \sum y_i = D > 0$ (es befinden sich noch D Token im Netz),
- dann gilt $\forall i: z_i \boxed{} \leq y_i \leq z_i$ wobei $[z_1, \ldots]$ die (eindeutige) Schrittfolge mit $\sum z_i = \sum x_i$

Folgerung: auch wenn der Ruhezustand nie eintritt, sind die Ausgänge gut verteilt (hoher Durchsatz \implies kleines $D \implies$ gute Verteilung)

Netzwerke aus Verteilern

Verteiler:

- ein *Verteiler* (balancer) ist Schaltkreis mit zwei Eingängen, zwei Ausgängen, einem Zustand.
- Wenn Zustand *hoch*, erscheint nächstes Eingangstoken am oberen Ausgang. Wenn Zustand *tief*, am unteren.
- Nach jedem Token wechselt der Zustand.

Eigenschaften/Fragen:

- jeder Verteiler ist ein Zählnetz für 2 Eingänge
- gibt es Zählnetze aus Verteilern (z. B. für 4 Eingänge)?
- kann man diese systematisch konstruieren?

Bitonisches Zählen und Zusammenfügen (I)

Ansatz für Konstruktion eines 2^k -Zählnetzes aus Verteilern:

ullet Zählnetze C benutzen Teilnetzwerke M, deren Eingangsfolgen (nach Induktion) Schrittfolgen sind.

(vergleiche mergesort: die Funktion merge wird nur auf geordnete Folgen angewendet)

• Konstruktion der Zählnetze: Induktionsanfang: $C_1(x_1) =$

Induktionsschritt: $C_{2n}(x_1, \dots, x_{2n}) = C_n(x_1, \dots, x_n); C_n(x_{n+1}, \dots, x_{2n}); M_{2n}(x_1, \dots, x_n; x_{n+1}, \dots, x_{2n})$

• Konstruktion der Merge-Netze: (Spezifikation?)

Induktionsanfang: $M_2(x_1, x_2)$; Induktionsschritt?

Bitonisches Zählen und Zusammenfügen (II)

Induktionsschritt:

$$M_{2n}(\vec{x}, \vec{y}) = \begin{cases} M_n(\text{odd } \vec{x}, \text{even } \vec{y}); \\ M_n(\text{even } \vec{x}, \text{odd } \vec{y}); \\ V(x_1, x_2); \dots; V(y_{n-1}, y_n) \end{cases}$$

mit
$$V(p,q)$$
 = Verteiler, odd $(x_1, x_2, ...) = (x_1, x_3, ...)$, even $(x_1, x_2, ...) = (x_2, x_4, ...)$.

Satz: jedes solche M_n erfüllt die Spezifikation.

Übung: konstruiere C_4, M_4

Übung: Beweis für M_8 mit Eingangsfolge (3,3,3,2;9,9,8,8), unter der Annahme, daß der Satz für M_4 gilt.

Übung: Beweis für M_{2n} mit beliebiger Eingangsfolge, unter der Annahme, daß der Satz für M_n gilt.

Implementierung für Verteiler und Netze

Plan:

```
struct Balancer {
    AtomicBoolean state;
    Balancer [Boolean] next;
}
traverse (Balancer b) {
    while (nicht fertig) {
       boolean i = b.state.getAndNegate();
       traverse(b.next[i]);
    }
}
```

Aufgaben:

- implementiere negate
- implementiere Verteiler mit STM

Anwendungen von Zählnetzen

 $\label{lem:http://www.cs.yale.edu/homes/aspnes/papers/ahs-abstract.html Section 5$

- verteiltes Zählen
 - n Ein/Ausgänge, an jedem Ausgang ein Zähler mit Schrittweite n
- verteilter Producer/Consumer-Puffer

benutzt zwei Netze der Breite n zum verteilten Zählen

sowie n 1-Element-Container

• Synchronisationsbarriere (vgl. CyclicBarrier)

Übung Zählnetze

Beweise: die folgenden Bedingungen sind äquivalent:

- (x_1, \ldots, x_n) ist Schrittfolge
- $\forall 1 \leq i < j \leq n : 1 \geq x_i x_j \geq 0.$
- Wenn $m = \sum x_i$, dann $\forall i : x_i = \lceil \frac{m-i+1}{n} \rceil$

Wenn x eine Schrittfolge ist, welche Beziehungen gelten zwischen $\sum \operatorname{odd}(x), \sum (x)/2, \sum \operatorname{even}(x)$? (Möglichst genau! Benutze ggf. $\lceil \cdot \rceil, \lfloor \cdot \rfloor$

Beweise: Wenn x und y gleichlange Schrittfolgen mit $\sum x = 1 + \sum y$, dann gilt für alle bis auf ein i: $x_i = y_i$. Was gilt stattdessen für dieses i?

periodische Zählnetze

14 Parallele Auswertungsstrategien

Überblick

- ullet bei Ausdrücken f(X,Y) kann man Werte von X und Y parallel und unabhängig berechnen,
- wenn die Auswertung von X und Y nebenwirkungsfrei ist.
- im einfachsten Fall sind *alle* Ausdrücke nebenwirkungsfrei (Haskell)
- Haskell benutzt Bedarfsauswertung. Strategie-Kombinatoren und -Annotationen erzwingen frühere/verteilte Auswertung von Teilausdrücken:
 - Kombinatoren: par X (pseq Y (f X Y))
 - Strategie-Annotationen: xs 'using' parList rseq

Algebraische Datentypen und Pattern Matching

ein Datentyp mit zwei Konstruktoren:

Programm mit Pattern Matching:

beachte: Datentyp rekursiv ⇒ Programm rekursiv

```
append :: List a -> List a -> List a
```

Alg. Datentypen (Beispiele)

```
data Bool = False | True
data Maybe a = Nothing | Just a

data Tree a =
    Leaf | Branch ( Tree a ) a ( Tree a)

Ü: inorder, preorder, leaves, depth
    Ü: Schlüssel in Blättern

data N = Z | S N

Ü: Rechenoperationen

Notation für Listen in Haskell:
    anstatt data List a = Nil | Cons a (List a)
    wird benutzt data [a] = [] | (a : [a])
```

Bedarfsauswertung

- Konstruktoren werten Argumente (zunächst) nicht aus statt Wert (struct) wird Programm (thunk) gespeichert, das den Wert ausrechnen kann
 - (ähnlich einer Future, die noch nicht gestartet wurde)
- Konstruktor wird erst bestimmt, wenn er für Pattern Matching benötigt wird (Vergleich mit einem Konstruktor eines Musters in case)
- dann wird thunk durch Wert überschrieben
- Wert kann selbst wieder thunks enthalten

Normalformen

- ein Objekt, das kein thunk ist, heißt (schwache) Kopfnormalform (whnf)
 d.h., der oberste Konstruktor ist bestimmt
 Teilobjekte können thunks sein
- ein Objekt, das kein thunk ist und keine thunks enthält, heißt *Normalform* d.h., *alle* Konstruktoren sind bestimmt
- Zahlen, Zeichen sind auch Normalformen aber Typ Int bedeutet "thunk oder Zahl": data Int = GHC.Types.I# GHC.Prim.Int#

Experiment zu Liste, Sequence, whnf

```
ghci
:set +s

let xs = [1..10^6] :: [Int]
seq xs (); head xs; last xs; last xs

import qualified Data.Sequence as S
let ys = S.fromList xs
seq ys (); S.index ys 0
S.index ys (10^6-1)
```

Bedarfsauswertung und Parallelisierung

- GHC RTS verwaltet spark pool,
 Spark ist (Zeiger auf) thunk, Pool ist Menge von Sparks
- parallele worker threads bestimmen whnf der sparks
- Spark (für x) wird erzeugt durch par x y
- Schicksal der Sparks (Statistik: ./Main +RTS -N -s)
 - converted: worker überschreibt thunk durch whnf
 (das ist anzustreben: worker hilft Hauptprogramm)

- fizzled: Hauptprogramm überschreibt thunk durch whnf (das ist schlecht: worker hat umsonst gearbeitet)
- garbage collected: whnf wurde nicht benötigt

Beispiel: Mergesort

Sequentieller Algorithmus, wesentlicher Teil:

```
msort :: Ord a => [a] -> [a] -> [a]
msort xs =
  let ( here, there ) = split xs
      sh = msort here ; st = msort there
  in merge sh st
```

parallelisiert durch: import Control.Parallel

- .. in par sh \$ pseq st \$ merge sh st
- Datentyp [a] nützt hier wenig:
 Cons ist lazy, whnf enthält ggf. nur ein Cons.
- Data. Sequence. Seq a ist besser ist balancierter Baum, deswegen whnf \approx nf

Beispiel: Primzahlen

Aufgabe: bestimme $\pi(n) :=$ Anzahl der Primzahlen in [1..n] auf naive Weise (durch Testen und Abzählen)

parallele Auswertung durch Strategie-Annotation

```
withStrategy ( parListChunk 100000 rdeepseq )
  ( map prime [lo..hi] )
```

getrennte Beschreibung von Wert und Strategie

Beschreibungssprache (EDSL) für Strategien

http://hackage.haskell.org/package/parallel/docs/Control-Parallel-Strategies.html

Parallel LINQ

Beispiel:

Typen:

- System.IEnumerable<E>
- System.Linq.ParallelEnumerable<E>

http://msdn.microsoft.com/en-us/library/dd997425.aspx Übung:

- paralleles foreach
- Steuerung der Parallelität durch Partitioner

Übung

• Laufzeitanalyse mit Threadscope

```
ghc -O2 -eventlog -threaded Pr.hs
./Pr 6 +RTS -N2 -1
threadscope Pr.eventlog
```

- Primzahlen:
 - finde beste chunk size für map isprime [..]
 - warum ist parallele Auswertung innerhalb von isprime unzweckmäßig?
- bitcounts summieren

15 Flexible Parallelisierung durch assoziative Operationen

Motivation

Beispiel Summe eine Liste durch beliebige Klammerung von zweistelligen Additionen

```
sum [3,1,2,4] = ((3+1)+2)+4 = 3+(1+(2+4))
```

wähle den Berechnungsbaum, der am besten zu verfügbarer Hardware (Anzahl Prozessoren) paßt

```
\dots = (3+1) + (2+4)
```

Verallgemeinerung statt Addition: beliebige assoziative Operation, nicht notwendig kommutativ, d.h. Blatt-Reihenfolge muß erhalten bleiben

Monoide

- eine Struktur A mit Operation \circ_A und Element 1_A heißt *Monoid*, falls:
 - ○_A ist assoziativ
 - 1_A ist links und rechts neutral für \circ_A
- Beispiele:

Listen, Verkettung, leerer Liste natürliche Zahlen, Addition, 0

- Monoid-Morphismen von Listen lassen sich flexibel parallelisieren
- Beispiele: Länge, Summe.

Homomorphismen

homo-morph = gleich-förmig Signatur Σ (= Menge von Funktionssymbolen) Abbildung h von Σ -Struktur A nach Σ -Struktur B ist Homomorphismus, wenn: $\forall f \in \Sigma, x_1, \ldots, x_k \in A: \qquad h(f_A(x_1, \ldots, x_k)) = f_B(h(x_1), \ldots, h(x_k))$ Beispiel:

- $\Sigma =$ Monoid-Signatur (Element 1, binäre Operation \circ)
- $A = \text{List a (Listen) mit } 1_A = \text{Nil}, \circ_A = \text{append}$
- B = N (Zahlen) mit $1_B = 0, \circ_B = \text{plus}$
- h = length

Homomorphismen von Listen

Abbildung [a] -> b ist gegeben durch

- Bild der leeren Liste :: b
- Bild der Einerliste :: a -> b
- Verknüpfung :: b -> b -> b

```
foldb :: b -> (a->b) -> (b->b->b) -> [a]-> b
foldb n e f xs = case xs of
  [] -> n; [x] -> e x
  _ -> let (l,r) = splitAt ... xs
        in f (foldb n e f l) (foldb n e f r)
```

Satz: f assoziativ und n links und rechts neutral für $f \Rightarrow foldb \ n \in f$ ist Monoid-Homomorphismus von ([a],[],++) nach (b,n,f)

Maximale Präfix-Summe

```
mps :: [Int] -> Int
mps xs = maximum $ map sum $ inits xs

mps [1,-1,0,2,0,-1] = maximum [0,1,0,0,2,2,1] = 2
   ist kein Homomorphismus (Gegenbeispiel?) aber das:

mpss :: [ Int ] -> ( Int, Int )
mpss xs = ( mps xs, sum xs )

Bestimme die Verknüpfung in (Int, Int)
   (die Darstellung als foldb)
```

Sequentielle Folds

beweise Assoziativität

für sequentielle Berechnung sind geeignet

```
foldr :: ( a -> b -> b) -> b -> [a] -> b
foldr f e xs = case xs of
   [] -> e; x : ys -> f x (foldr f e ys)

foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f e xs = case xs of
   [] -> e; x : ys -> foldl f (f e x) ys
```

foldl paßt zum Iterator-Muster (Berechnung über einen Stream, mit einem Akkumulator), vgl. Aggregate in C#/Linq

Homomorphie-Sätze

1. für jeden Hom exist. Zerlegung in map und reduce — und das reduce kann man flexibel parallelisieren!

```
Bsp: length = reduce (+) . map (const 1)
map: parallel ausrechnen, reduce: balancierter Binärbaum.
```

- 2. jeden Hom. kann man als foldl und als foldr schreiben
- 3. (Umkehrung von 2.) Wenn eine Funktion sowohl als foldl als auch als foldr darstellbar ist, dann ist sie ein Hom. und kann (nach 1.) flexibel parallelisiert werden m.a.W: aus der Existenz zweier sequentieller Algorithmen folgt die Existenz eines parallelen Alg.

Literatur

• Jeremy Gibbons: *The Third Homomorphism Theorem*, Journal of Functional Programming, May 1995.

```
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.2247&rep=rep1&type=pdf
```

• Kazutaka Morita, Akimasa Morihata, Kiminori Matsuzaki, Zhenjiang Hu, Masato Takeichi: *Automatic Inversion Generates Divide-and-Conquer Parallel Programs*, PLDI 2007.

Übung Assoc.

• ist f::[a] -> Bool mit f xs = "die Länge von xs ist gerade" ein Morphismus?

```
desgl. für ,... ist durch 3 teilbar" wenn nein: Gegenbeispiel lt. Definition, wenn ja: Implementierung mit foldb
```

• desgl. für

```
f :: [a] -> Maybe a
f xs = case xs of
  [] -> Nothing ; x:ys -> Just x
```

• mss :: [Int] -> Int maximale Segmentsumme (über alle zusammenhängenden Teilfolgen)

durch ein assoziative Verknüpfung auf angereicherter Struktur (Hinweis: 3-Tupel von Zahlen)

• carry :: [(Bool, Bool)] -> Bool Übertrag bei Addition von Binärzahlen

```
Hinweis: betrachte f :: [(Bool, Bool)] -> (Bool, Bool) mit Spezifikation f xys = (p,q) gdw. \cin -> p 'xor' (q && cin) beschreibt ausgehenden Übertrag
```

• Diskutiere Parallelisierung von up :: Ord a => [a] -> Int Länge einer längsten aufsteigenden (mglw. lückenhaften) Teilfolge.

Diskussion: Kommutativität

Methode aus PLINQ (http://msdn.microsoft.com/en-us/library/ff963547.
aspx)

```
Aggregate<S, A, R>(
   this ParallelQuery<S> source,
   Func<A> seedFactory,
   Func<A, S, A> updateAccumulatorFunc,
   Func<A, A, A> combineAccumulatorsFunc,
   Func<A, R> resultSelector);
```

- in Haskell nachbauen (Typ und Implementierung)
- combine muß kommutativ sein (http://blogs.msdn.com/b/pfxteam/archive/2008/01/22/7211660.aspx) warum?

16 Das Map/Reduce-Framework

Schema und Beispiel

```
map_reduce
:: ( (ki, vi) -> [(ko,vm)] ) -- ^ map
-> ( (ko, [vm]) -> vo ) -- ^ reduce
-> [(ki,vi)] -- ^ eingabe
-> [(ko,vo)] -- ^ ausgabe
```

Beispiel (word count)

```
ki = Dateiname, vi = Dateiinhalt
ko = Wort    , vm = vo = Anzahl
```

- parallele Berechnung von map
- parallele Berechnung von reduce
- verteiltes Dateisystem für Ein- und Ausgabe

Literatur

- Jeffrey Dean and Sanjay Ghemawat: *MapReduce: Simplified Data Processing on Large Clusters*, OSDI'04: Sixth Symposium on Operating System Design and Implementation, San Francisco, CA, December, 2004. https://research.google.com/archive/mapreduce.html
- Ralf Lämmel: Google's MapReduce programming model Revisited, Science of Computer Programming SCP, vol. 70, no. 1, pp. 1-30, 2008 https://userpages.uni-koblenz.de/~laemmel/MapReduce/paper.pdf

Implementierungen

- Haskell:
 - wenige Zeilen, zur Demonstration/Spezifikation
- Google:

```
C++, geheim
```

• Hadoop:

```
Java, frei (Apache-Projekt, Hauptsponsor: Yahoo)
```

```
http://hadoop.apache.org/
```

Implementierung in Haskell

```
import qualified Data.Map as M

map_reduce :: ( Ord ki, Ord ko )
   => ( (ki, vi) -> [(ko,vm)] ) -- ^ distribute
   -> ( ko -> [vm] -> vo ) -- ^ collect
   -> M.Map ki vi -- ^ eingabe
   -> M.Map ko vo -- ^ ausgabe

map_reduce distribute collect input
   = M.mapWithKey collect
   $ M.fromListWith (++)
   $ map ( \ (ko,vm) -> (ko,[vm]) )
   $ concat $ map distribute
   $ M.toList $ input
```

Anwendung: Wörter zählen

wo liegen die Möglichkeiten zur Parallelisierung? (in diesem Programm nicht sichtbar.)

Hadoop

Bestandteile:

- verteiltes Dateisystem
- verteilte Map/Reduce-Implementierung

Betriebsarten:

- local-standalone (ein Prozeß)
- pseudo-distributed (mehrere Prozesse, ein Knoten)
- fully-distributed (mehrere Knoten)

Voraussetzungen:

- java
- ssh (Paßwortfreier Login zwischen Knoten)

Hadoop-Benutzung

• (lokal) konfigurieren

```
conf/{hadoop-env.sh, *-site.xml}
```

• Service-Knoten starten

```
bin/start-all.sh --config /path/to/conf
```

• Job starten

```
bin/hadoop --config /path/to/conf \\
    jar examples.jar terasort in out
```

Informationen:

- Dateisystem: http://localhost:50070,
- Jobtracker: http://localhost:50030

Wörter zählen

```
public static class TokenizerMapper
  extends Mapper<Object, Text, Text, IntWritable>{
  public void map(Object key, Text value, Context context) { } }
public static class IntSumReducer
  extends Reducer<Text, IntWritable, Text, IntWritable> {
  public void reduce(Text key, Iterable<IntWritable> values, Context context context context.
```

```
public static void main(String[] args) { ...
  job.setMapperClass(TokenizerMapper.class);
  job.setCombinerClass(IntSumReducer.class);
  job.setReducerClass(IntSumReducer.class); ... }
```

 $\verb|hadoop/src/examples/org/apache/hadoop/examples/WordCount.java|$

Sortieren

vgl. http://sortbenchmark.org/, Hadoop gewinnt 2008. Beispielcode für

- Erzeugen der Testdaten
- Sortieren
- Verifizieren

(jeweils mit map/reduce)

Index-Berechnung

```
• Eingabe: Map<Quelle, List<Wort>>
```

• Ausgabe: Map<Wort, List<Quelle>>

Spezialfall: Quelle = Wort = URL, ergibt ,,das Web".

Page Rank (I)

"Definition": eine Webseite (URL) ist wichtig, wenn wichtige Seiten auf sie zeigen.

- Eingabe: Matrix link :: (URL, URL) \rightarrow Double mit link (u, v) = Wahrscheinlichkeit, daß der Besucher von u zu v geht.
- Gesucht: Vektor w :: URL -> Double mit w * link = w

Modifikationen für

- eindeutige Lösbarkeit
- effiziente Lösbarkeit

Page Rank (Eindeutigkeit)

- aus der Link-Matrix: Sackgassen entfernen (dort zufällig fortsetzen)
- diese Matrix mit völlig zufälliger Verteilung überlagern

Resultat ist (quadr.) stochastische Matrix mit positiven Einträgen, nach Satz von Perron/Frobenius

- besitzt diese einen eindeutigen größten reellen Eigenwert
- und zugehöriger Eigenvektor hat positive Einträge.

Page Rank (Berechnung)

```
durch wiederholte Multiplikation: beginne mit w_0 = Gleichverteilung, dann w_{i+1} = L \cdot w_i genügend oft (bis |w_{i+1} - w_i| < \epsilon)
```

diese Vektor/Matrix-Multiplikation kann ebenfalls mit Map/Reduce ausgeführt werden.

```
(Welches sind die Schlüssel?)
(Beachte: Matrix ist dünn besetzt. Warum?)
```

Quelle: Massimo Franceschet: *PageRank: Standing on the Shoulders of Giants* Comm. ACM 6/2011, http://cacm.acm.org/magazines/2011/6/108660

Übung Map/Reduce

• PLINQ/Aggregate:

wie oft und für welche Argumente werden aufgerufen: update, combine? (abhängig von MaxDegreeOfParallelism)

• Map/Reduce (Haskell):

```
Wordcount ausprobieren (Beispieltext: http://www.gutenberg.org/etext/4300)
```

Wie bestimmt man die häufigsten Wörter? (allgemeinster Typ? Implementierung mit map/red?)

wie multipliziert man (dünn besetze) Matrizen mit map/red?

• Map/Reduce mit Hadoop:

http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux

17 Hardwarenahe Parallelität: CUDA

Beispiel

- Aufgabe: gesucht ist
 - Konfiguration von P Punkten im Einheitsquadrat,
 - deren minimaler gegenseitiger Abstand maximal ist.

```
( http://www2.stetson.edu/~efriedma/cirinsqu/ )
```

- Lösungsplan: zufällige lokale Suche
- Teilaufgabe dabei: bewerte eine Liste von K Konfigurationen
- Parallelisierungsmöglichkeiten:
 - Bewertung für alle Konfigurationen gleichzeitig
 - Abstandsberechnung für alle Punktepaare gleichzeitig
- das ist *massiv* parallel $(K = 128, P = 16) \dots$ solche Prozessoren gibt es *preiswert* CUDA ist eine C-Erweiterung zur Programmierung dafür

Sequentielle und parallele Lösung (Ansatz)

```
for (int k = 0; k < K; k++) {
   float mindist = +infinity;
   for (int p = 0; p < P; p++) {
      for (int q = p + 1; q < P; q++ ) {
        float s = abstand (c[k][p], c[k][q]);
        mindist = MIN (mindist, s); }
   c[k].fitness = mindist; }

dim3 blocks (K, 1); dim3 threads (P, P);
   kernel <<<blooks, threads>>> (c);
   __global__ kernel (config *c) {
      int k = blockIdx.x;
      int p = threadIdx.x; int q = threadIdx.y;
      if (p < q) { float s = abstand (c[k][p], c[k][q]); }
      // Berechnug des MIN?
}</pre>
```

Threadkommunikation

Binäre Reduktion

Datentransport zwischen Host und Decive

Zusammenfassung CUDA

CUDA-Programmierung ist

- programmiersprachlich einfach
- algorithmisch anspruchsvoll (imperative parallele Programmierung)

jeweils projektspezifisch sind festzulegen

- was läuft auf Device, was auf Host?
- Abmessung der Threadblöcke auf dem Device?
- Host realisiert Software-API (Steuerprogramm in Hochsprache)

Alternativen:

- OpenCL https://www.khronos.org/opencl/
- accelerate/CUDA-backend http://hackage.haskell.org/package/accelerate

Literatur CUDA

- David B Kirk, Wen-mei W Hwu, Programming Massively Parallel Processor, Morgan Kaufmann, 2010
- Jason Sanders, Edward Kandrot: *CUDA by Example*, Addison-Wesley, 2011 http://developer.nvidia.com/cuda-example-introduction-general-purpose-gpu-programm

18 Zusammenfassung, Ausblick

Zusammenfassung

- Zustandsübergangssystem, Petri-Netz
- Spursprache, Omega-reguläre Wörter, Temporal-Logik
- sicherer Zugriff auf gemeinsamen Speicher: Semaphore, Transaktionen (STM), atomare Transaktionen (CAS)
- Prozesse mit lokalem Speicher:
 CSP, Bisimulation, Kanäle, Aktoren, verteilte Programme
- deterministischer Parallelismus:
 Strategie-Annotationen, balancierte folds, map/reduce

Beispielklausur(alt) http://www.imn.htwk-leipzig.de/~waldmann/edu/ ss11/skpp/klausur/

Parallele Algorithmen

- in SKPP haben wir programmiersprachliche Konzepte betrachtet, um parallele Algorithmen zu implementieren.
- woher kommen die Algorithmen?

```
paralleles Suchen, Sortieren, Matrixmultiplizieren, ...
```

```
Bsp: \verb|http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/twodim/shear/shearsorten.htm|
```

dazu braucht man eine eigenen Vorlesung, vgl.

- Joseph JaJa: *Introduction to Parallel Algorithms* (Addison-Wesley, 1992) ISBN-10: 0201548569
- Algorithm Design: Parallel and Sequential (CMU, aktuell) http://www.parallel-algorithms.com/

Komplexitätstheorie für parallele Algorithmen

Klassen:

- NC = polylogarithmische Zeit, polynomielle Anzahl von Prozessoren
- P = polynomielle Zeit
- $NC \subseteq P$

Reduktionen:

- \leq_L logspace-Reduktion, Eigenschaften
- P-vollständige Probleme (Bsp: Auswertung beliebiger Schaltkreise)

(vgl. für sequentielle Algorithmen: Klasse NP, Polynomialzeitreduktion \leq_P , NP-Vollständigkeit)