
On Tree Automata that Certify Termination of
Left-Linear Term Rewriting Systems

Alfons Geser1?, Dieter Hofbauer2, Johannes Waldmann3, and Hans Zantema4

1 National Institute of Aerospace, 144 Research Drive,
Hampton, Virginia 23666, USA. Email: geser@nianet.org

2 Mühlengasse 16, D-34125 Kassel, Germany.
Email: dieter@theory.informatik.uni-kassel.de

3 Hochschule für Technik, Wirtschaft und Kultur (FH) Leipzig
Fb IMN, PF 30 11 66, D-04251 Leipzig, Germany. Email:

waldmann@imn.htwk-leipzig.de
4 Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven

Postbus 513, 5600 MB Eindhoven, The Netherlands. Email: h.zantema@tue.nl

Abstract. We present a new method for proving termination of term
rewriting systems automatically. It is a generalization of the match bound
method for string rewriting. To prove that a term rewriting system termi-
nates on a given regular language of terms, we first construct an enriched
system over a new signature that simulates the original derivations. The
enriched system is an infinite system over an infinite signature, but it is
locally terminating: every restriction of the enriched system to a finite
signature is terminating. We then construct iteratively a finite tree au-
tomaton that accepts the enriched given regular language and is closed
under rewriting modulo the enriched system. If this procedure stops,
then the enriched system is compact: every enriched derivation involves
only a finite signature. Therefore, the original system terminates. We
present three methods to construct the enrichment: top heights, roof
heights, and match heights. Top and roof heights work for left-linear sys-
tems, while match heights give a powerful method for linear systems.
For linear systems, the method is strengthened further by a forward clo-
sure construction. Using these methods, we give examples for automated
termination proofs that cannot be obtained by standard methods.

1 Introduction

We present a new method for proving automatically that a term rewriting system
(TRS) terminates on each term from a given regular term language. Our method
consists of two steps. In the first step, we switch to an enrichment of the given
TRS, i.e., a rewriting system over a different signature that simulates the original
derivations. We consider enriched systems over infinite signatures that are locally
terminating : every restriction to a finite signature is terminating. In the second
? Partly supported by the National Aeronautics and Space Administration under

NASA Contract No. NAS1-97046 while this author was in residence at the NIA.

step, we compute a compatible finite tree automaton for this enrichment, i.e.,
a tree automaton that contains the enriched given regular tree language and
is closed under rewriting modulo the enriched system. The existence of such
a compatible automaton ensures that the enriched TRS is compact, i.e., every
infinite derivation involves only a finite signature. By local termination of the
enrichment, the automaton certifies termination of the original system.

We have previously applied this method to string rewriting [7]. The string
rewriting version is implemented in the tools TORPA [18], Matchbox [17] and
AProVE [11]. In the present paper, we describe how to extend it to term rewrit-
ing. Non-linearities in the TRS complicate both the termination arguments
and the automata constructions. The algorithms we present are implemented
in Matchbox.

The enrichments that we consider are variants of the original TRS in which
the symbols are labelled by natural numbers. An enrichment is more powerful
than another if the labels in the right-hand sides are smaller. We introduce three
enrichments with increasing power: top heights, roof heights and match heights.
For match heights, linearity of the TRS is required for the desired theorem to
hold. So for linear TRSs the best results are obtained by choosing the enrich-
ment based on match heights, and for non-right-linear TRSs the best results are
obtained by choosing the enrichment based on roof heights.

For linear systems, uniform termination can be concluded from termination
on a restricted set of initial terms: the set of right-hand sides of forward closures.
We use our method both to compute this set, and to prove termination on it,
at the same time.This turns out to be more powerful than applying the method
directly for the original system and the set of all terms. To our knowledge, this is
the first method that computes finite representations of infinite sets of right-hand
sides of forward closures on TRSs.

The paper is organized as follows. In Section 3 we define enrichments, give
three instances, and compare them. In Section 4 we define compatible tree au-
tomata and in Section 5 we discuss how to construct them. Section 6 presents
the simulation of forward closures by rewriting, while Section 7 shows how to
implement this with an automata construction.

A preliminary version of this paper has been presented at the 7th Interna-
tional Workshop on Termination, Aachen 2004 [8].

2 Preliminaries

For a relation ρ on a set T and t ∈ T write ∞(t, ρ) if there is an infinite sequence
t0, t1, . . . over T where t = t0 and ti ρ ti+1 for every i ≥ 0, and abbreviate
¬∞(t, ρ) by SN(t, ρ). Define SN(S, ρ) for S ⊆ T by ∀s ∈ S : SN(s, ρ); then ρ
is terminating (or: strongly normalizing) on S. Let SN(ρ) stand for SN(T, ρ).
Analogously write ∞(ρ) for ¬(SN(ρ)). The reflexive closure of ρ is ρ=, the com-
position of two relations ρ ⊆ A× B and σ ⊆ B × C is ρ ◦ σ = {(a, c) | ∃b ∈ B :
(a, b) ∈ ρ, (b, c) ∈ σ}.

2

For standard notations on term rewriting see [1, 19], for instance. Throughout
we fix a signature Σ, a set of variables X, and consider term rewriting systems
R ⊆ TΣ(X)×TΣ(X). Unless otherwise stated, signatures and rewriting systems
are finite. The set of left- and right-hand sides of R are denoted by lhs(R) and
rhs(R) respectively. Since our topic is termination, we assume lhs(R) ∩X = ∅,
and X(r) ⊆ X(`) for rules ` → r. Let X(t) ⊆ X denote the set of variables that
occur in t ∈ TΣ(X), and let X(T) =

⋃
t∈T X(t) for T ⊆ TΣ(X). For a mapping

h : TΣ(X) → TΓ (X) define the term rewriting system h(R) = {h(`) → h(r) |
(` → r) ∈ R} over signature Γ . For the symbol at position p in term t we write
t(p). For Y ⊆ Σ ∪ X let PosY (t) be the set of positions p such that t(p) ∈ Y .
We use < for the prefix ordering on positions. The set of descendants modulo R
of a tree language L ⊆ TΣ is →∗

R(L) = {s ∈ TΣ | ∃t ∈ L : t →∗
R s}.

The domain and the range of a substitution α : X → TΣ(X) are dom(α) =
{x ∈ X | xα 6= x} and ran(α) = {xα | x ∈ dom(α)}. For Y ⊆ dom(α) let α|Y
be the substitution with domain Y where α|Y : x 7→ xα for x ∈ Y , α|Y : x 7→ x
otherwise. For substitutions α and α′ we write α →R α′ if dom(α) = dom(α′),
and xα →R xα′ for some x ∈ dom(α) and yα = yα′ for every y 6= x.

A tree automaton A = (Q, Σ, F, T) over a signature Σ consists of a set Q
of constant symbols, disjoint from Σ, called states; a set F ⊆ Q of final states;
and a ground rewriting system T over Σ∪Q with rules (transitions) of the form
q0 → q or f(q1, . . . , qn) → q for n-ary f ∈ Σ, n ≥ 0, and q0, . . . , qn, q ∈ Q. The
automaton is finite if T is finite, and it is deterministic if T is non-overlapping.
The language accepted by A is L(A) = {t ∈ TΣ | ∃q ∈ F : t →∗

T q}. For more on
tree languages we refer to [5, 2].

3 Enrichments of Rewriting Systems

Definition 1. A TRS R′ over a signature Σ′ is an enrichment
of a TRS R over a signature Σ if there is a mapping base :
TΣ′ → TΣ such that every R-derivation step can be lifted to
an R′-derivation step: for each step s →R t and each s′ ∈
base−1(s) there is some t′ ∈ base−1(t) with s′ →R′ t′.

s′

base

��

R′
// t′

base

��
s

R
// t

We use enrichments to propagate termination properties:

Proposition 1. Let R and R′ be TRSs over Σ and Σ′ resp., let L ⊆ TΣ and
L′ ⊆ TΣ′ . If R′ is an enrichment of R via base : TΣ′ → TΣ, and L ⊆ base(L′),
then termination of R′ on L′ implies termination of R on L.

Suitable enrichments will satisfy the following property:

Definition 2. A finite or infinite TRS R over a finite or infinite signature Σ
is called locally terminating if every restriction of R to a finite signature Γ ⊆ Σ
is terminating: R ∩ (TΓ (X)× TΓ (X)) is terminating on TΓ .

In the following, we will present three enrichments that are locally terminat-
ing, one of them under a suitable linearity restriction. We choose the enriched

3

signature Σ′ = Σ×N, and call the numbers heights. We often write fh for (f, h).
Define the mappings base : Σ′ → Σ, height : Σ′ → N, and lifth : Σ → Σ′ by

base : (f, h) 7→ f, height : (f, h) 7→ h, lifth : f 7→ (f, h),

which are extended pointwise to term morphisms. E.g., lift2(f(x, a)) = f2(x, a2))
where a is a constant symbol, and x is a variable. We will use one fixed ordering
on Σ′, called the height ordering, given by (f, h) < (f ′, h′) iff h > h′. This
ordering is well-founded when restricted to finite sets.

The enrichments label symbols in the right-hand side of a rule with the
successor of the minimum of the heights of all symbols at a specified subset of
positions in the left-hand side:

Definition 3. For a term rewriting system R over Σ, and a function f that
maps a rewriting rule (` → r) to a nonempty subset of PosΣ(`), we define the
f -cover of R to be the term rewriting system over Σ × N given by

coverf (R) = {`′ → lifth(r) | (` → r) ∈ R, base(`′) = `,

h = 1 + min{height(`′(p)) | p ∈ f(`, r)}}.

Note that coverf (R) is indeed an enrichment of R.
To present the enrichments, we need one auxiliary definition:

Definition 4. A position p ∈ PosΣ(t) is a roof position in t ∈ TΣ(X) for a set
of variables Y ⊆ X if for each y ∈ Y there is q ∈ Pos{y}(t) such that p < q. Let
RPosY (t) denote the set of all roof positions in t for Y .

E.g., term t = f(f(x, g(y)), a) has RPos{y}(t) = {ε, 1, 12} and RPos{x}(t) =
RPos{x,y}(t) = {ε, 1}, so position 12 of g is not a roof position for {x} or {x, y}.
Also for s = f(f(x, g(y)), x) we get RPos{x}(s) = RPos{x,y}(s) = {ε, 1}.

Now we define the enrichments that we will use in the rest of this paper.

Definition 5. – The top enrichment top(R) is coverf (R) for f(`, r) = {ε}.
– The roof enrichment roof(R) is coverf (R) for f(`, r) = RPosX(r)(`).
– The match enrichment match(R) is coverf (R) for f(`, r) = PosΣ(`).

Example 1. Take R = {s(x) + 0 → s(x)}. Then top(R) contains, among others,
the rule s1(x)+2 00 → s3(x), since 2 is the height of the top symbol +2. The sys-
tem roof(R) contains the rule s1(x)+2 00 → s2(x), since 1 is the minimal height
of a roof symbol (and 00 is not in roof position). Finally, match(R) contains the
rule s1(x) +2 00 → s1(x), since 00 has minimal height.

Lemma 1. For a term rewriting system R, both the systems top(R) and roof(R)
are locally terminating.

Proof. top(R) and roof(R) are ordered by the recursive path ordering induced
by the height ordering on Σ′, which is well-founded for finite signatures. ut

Lemma 2. For a right-linear term rewriting system R, the system match(R) is
locally terminating.

4

Proof. To each term in a ground match(R)-derivation assign the multiset of its
symbols. By right-linearity, this sequence of multisets is decreasing with respect
to the height ordering on Σ′. ut

Remark 1. Right-linearity is essential, as shown by the non-terminating system
{f1(a0, x) → f1(x, x)} ⊆ match({f(a, x) → f(x, x)}).

Definition 6. For e ∈ {top, roof,match}, a term rewriting system R over Σ
is called e-bounded by c ∈ N for a language L over Σ if the maximal height
occurring in →∗

e(R)(lift0(L)) is at most c.

Definition 7. A finite or infinite term rewriting system R over a finite or in-
finite signature Σ is said to be compact for a language L ⊆ TΣ if there exists a
finite subset Γ ⊆ Σ such that →∗

R(L) ⊆ TΓ .

Lemma 3. If a finite or infinite term rewriting system R is locally terminating
and compact for L ⊆ TΣ, then R is terminating on L.

Obviously e(R) is compact for every e-bounded TRS R. Together with Lem-
mas 1 and 2 we get:

Proposition 2. – If R is top-bounded for L, then R is terminating on L.
– If R is roof-bounded for L, then R is terminating on L.
– If R is right-linear and match-bounded for L, then R is terminating on L.

Remark 2. All the enrichments discussed here are obtained as covers (Defini-
tion 3). This has two implications: since we take the minimum, each enrichment
is monotonic (pointwise domination of heights is preserved by parallel deriva-
tions), and since the respective sets of positions are comparable by set inclusion
the enrichments are comparable as well: for corresponding derivations, match
heights are lower or equal to roof heights, and these are lower or equal to top
heights. So we prefer roof-heights to top-heights in general, and we will use
match-heights for right-linear systems.

Remark 3. Results on derivation lengths carry over from coverf (R) to R. For
instance, for right-linear systems R, every restriction of match(R) to a finite
signature has linear derivational complexity, so the same complexity holds for
every match-bounded right-linear system R. In contrast, for top-bounded R we
can have (single) exponential complexity, as for the system {f(x) → g(x, x)}
which is top-bounded by 1.

Remark 4. The correspondence between R and its enrichment R′ is a rewrite
labelling (with lift0 as the initial labelling function) as defined by van Oostrom
and de Vrijer [16], Section 8.4. They mention an earlier example of a labelling
with the property that “bounded reductions are finite”: the Hyland-Wadsworth
labelling of a rewriting system R is defined just like match(R), with the only
difference of taking max instead of min in Definition 3.

5

Remark 5. In the string rewriting case, which can be seen as a particular form
of linear term rewriting, all non-variable positions are roof positions, therefore
match(R) and roof(R) coincide. Match-boundedness and top-boundedness differ,
as the example {ab → a} shows, which is match-bounded by 1, but not top-
bounded.

4 Compatible Tree Automata

Definition 8. We call a tree automaton A = (Q,Σ, F, T) compatible with a
term rewriting system R over Σ and a language L over Σ if L ⊆ L(A), and
for each rule (` → r) ∈ R, for each state q ∈ Q, and for each substitution
σ : X(`) → Q, we have that `σ →∗

T q implies rσ →∗
T q.

Remark 6. We can decide compatibility of A with R and L in case A and R are
finite, and L is given by a finite tree automaton, by just enumerating all cases.

A compatible automaton is closed under left-linear rewriting.

Lemma 4. If A is compatible with R and L, and R is left-linear, then →∗
R(L) ⊆

L(A).

Proof. We show that R-derivations are covered “step by step” in A: if t1 ∈ L(A)
and t1 →R t2, then t2 ∈ L(A). Let t1 = t1[`σ]p →R t1[rσ]p = t2 for some
rule ` → r, position p, and substitution σ : X(`) → TΣ . Since t1 ∈ L(A),
there is a state q, a final state q̄, and a substitution ρ : X(`) → Q such that
t1 = t1[`σ]p →∗

T t1[`ρ]p →∗
T t1[q]p →∗

T q̄. Note that ρ exists as R is left-linear.
From `ρ →∗

T q and compatibility of A with R we get rρ →∗
T q. This implies

t2 = t1[rσ]p →∗
T t1[rρ]p →∗

T t1[q]p →∗
T q̄, thus t2 ∈ L(A). ut

The requirement of left-linearity in Lemma 4 cannot be dropped, as the
following example shows.

Example 2. We take an automaton A with states Q = {1, 2, 3} and transitions
a → 1, a → 2, f(1, 2) → 3 ∈ F . Then L(A) = {f(a, a)}. This automaton is
compatible with the rewriting system R = {f(x, x) → b} since there are no rule
(` → r) ∈ R, state q and substitution σ : X(`) → Q with `σ →∗

T q. On the other
hand, A is not closed under rewriting, as →∗

R(L(A)) = {f(a, a), b}.
The premise “R is left-linear” in Lemma 4 may be exchanged with “A is

deterministic”. We don’t follow on this branch in the present paper.
By Lemma 4 we get

Lemma 5. If R is left-linear, and there is some finite automaton A that is
compatible with R and L, then R is compact for L.

5 Constructing Compatible Automata

The following obvious procedure yields an automaton A = (Σ, Q, F, T) that is
compatible with a rewriting system R and a regular tree language L whenever
the procedure terminates:

6

Start with an automaton A0 that accepts L;
A := A0;
while A is not compatible

choose q ∈ Q, (` → r) ∈ R, σ : X(`) → Q
such that `σ →∗

T q and rσ 6→∗
T q;

add new states and transitions to A
yielding a new automaton A′ with transitions T ′

such that rσ →∗
T ′ q;

A := A′;

The interesting issue is the strategy : exactly how new states and transitions
are chosen. The straightforward strategy is to add a new state for each proper
subterm of rσ that is not in Q, and fill in the corresponding transitions.

Example 3. For the automaton A with transitions {a → 0, b → 1, f(0, 1) → 1},
and the rewriting system R = {` → r} = {f(x, y) → g(h(y), x)} we have
`σ →∗

T q for q = 1 and σ = {x 7→ 0, y 7→ 1}. Transitions and states have
to be added such that rσ = g(h(1), 0) →∗

T 1 = q. We add one new state 2,
corresponding to the subterm h(1) of rσ, and transitions {h(1) → 2, g(2, 0) → 1}.

The straightforward strategy is the basic idea behind automata closure con-
structions for various syntactically restricted classes of rewriting systems, e.g.,
ground, (generalized) (semi)-monadic, finite path overlapping systems. In each
case, the syntactic restriction ensures that only finitely many states and transi-
tions will be added.

We cannot generally avoid the addition of states. Therefore the completion
procedure for tree automata need not stop. Indeed there are rewriting systems
R, as in Example 5, for which the set of descendants is not regular. In such a
case, we try to over-approximate the set of descendants by a compatible tree
automaton. Genet [6] gets such an approximation by limiting the number of
states that are added to the automaton during completion.

We follow a more simplistic approach here that works well for match-bounded
string rewriting [9, 18]. We avoid generating some of the additional states as
follows. If rσ 6→∗

T q, we look for a context D[�], a context C[�, . . . ,�], and terms
t1, . . . , tn ∈ TΣ(Q) such that D[C[t1, . . . , tn]] = rσ. Suppose that D[q0] →∗

T q for
some state q0, and ti →∗

T qi for states qi, 1 ≤ i ≤ n. Then we add a fresh state
for each non-leaf, non-root subterm of C[�, . . . ,�], and transitions such that
C[q1, . . . , qn] →∗

T ′ q0. In this way, we re-use states that occur in the derivations
D[q0] →∗

T q and ti →∗
T qi.

This is a non-deterministic procedure. Our implementation chooses in each
step one such context C[�, . . . ,�] that requires the least number of new states.

For instance, take R = {` → r} = {b(a(x)) → c(b(x))}, and let A be a
two-state automaton with transitions T = {e → 0, a(0) → 0, b(0) → 1}, state 1
being final. Here, L(A) = b(a∗(e)). Now we have `{x 7→ 0} = b(a(0)) →T 1, but
r{x 7→ 0} = c(b(0)) 6→T 1. Here, c(b(0)) = D[C[t1]] for D[�] = �, C[�] = c(�),
and t1 = b(0). We have t1 →∗

T 1, so we add no new state (as C[�] has no

7

non-trivial subterms), but the transition c(1) → 1. The new automaton is now
compatible with R and L(A), and it accepts →∗

R(L(A)) = c∗(b(a∗(e))).
Note that a compatible automaton obtained this way may be an over-approx-

imation of the set of descendants:

Example 4. Let R = {a(c) → b(c)}, and L = {a(c), a(d)} accepted by the au-
tomaton with states {0, 1}, state 1 being final, and transitions {c → 0, d →
0, a(0) → 1}. The rewrite rule matches in state 1, so we have to ensure b(c) →∗ 1.
This could be done by adding a new state 2 and transitions c → 2, b(2) → 1.
As c →∗ 0, we might want to avoid state 2 and instead add the single tran-
sition b(0) → 1. But then b(d) →∗ 1 as well, so the automaton now accepts
{a(c), a(d), b(c), b(d)}, which is a proper superset of →∗

R(L) = {a(c), a(d), b(c)}.

For string rewriting, match-boundedness implies preservation of regularity of
languages [7]. As the following example shows, the corresponding property does
not hold for term rewriting.

Example 5. The system R = {g(f(x, y)) → f(h(x), h(y))} is top-bounded by 1.
However, the language →∗

R(L) ∩ f(h∗(a), h∗(a)) = {f(hn(a), hn(a)) | n ≥ 0} is
not regular for the regular language L = g∗(f(a, a)), so →∗

R(L) is not regular
either.

So contrary to the string rewriting case, there is no exact construction for the
sets of descendants of a regular language modulo top-bounded term rewriting.
Note that the same holds for roof- and match-bounded rewriting, since these
heights are majorized by top heights.

We conclude this section with a few examples that illustrate
our approach. In order to visualize tree automata, a transition
fh(q1, . . . , qn) → q is graphically represented as the hyperedge
in the illustration at the right. Squares contain function sym-
bols with height annotations as subscripts, where the argument
ordering is indicated by numbers at the incoming arrows. Cir-
cles denote states, and double circles denote final states.

76540123q

fh

OO

76540123q1

1

DD�����
. . . 76540123qn

n

ZZ66666

Example 6. For R = {f(x, f(a, a)) → f(f(x, a), x)} over {f, a} we present the
construction that proves that R is top-bounded by 3. We have to find an automa-
ton A that is compatible with top(R) and lift0(L). We start with the automaton
A0 = (Σ × N, {0}, {0}, T0) where T0 = {a0 → 0, f0(0, 0) → 0}, which accepts
lift0(TΣ). Now we have a derivation

f0(0, f0(a0, a0)) →∗
T0

0,

starting with a redex of the rule f0(x, f0(a0, a0)) → f1(f1(x, a1), x) from top(R).
The automaton A0 is not compatible, for f1(f1(0, a1), 0) 6→∗

T0
0. There are no

states we could re-use, so our first step follows the straightforward strategy: to
add the new states 1 and 2, corresponding to the subterms f1(0, a1) and a1,
respectively, and the rules

a1 → 2, f1(0, 2) → 1, f1(1, 0) → 0.

8

This way we get another automaton, A1 = (Σ × N, {0, 1, 2}, {0}, T1), where
T1 = T0 ∪ {a1 → 2, f1(0, 2) → 1, f1(1, 0) → 0}, such that f1(f1(0, a1), 0) →T1

f1(f1(0, 2), 0) →T1 f1(1, 0) →T1 0. For the new automaton, we again look for
violations of compatibility: We have the redex match

f1(1, f0(a0, a0)) →∗
T1

0

with the rule f1(x, f0(a0, a0)) → f2(f2(x, a2), x) in top(R). So A1 is not com-
patible, for f2(f2(1, a2), 1) 6→∗

T1
0. According to the straightforward strategy, we

add states 3 and 4, corresponding to the subterms f2(1, a2) and a2, respectively,
and transitions to A1. We get A2 = (Σ × N, {0, . . . , 4}, {0}, T2) where

T2 = T1 ∪ {a2 → 4, f2(1, 4) → 3, f2(3, 1) → 0},

and f2(f2(1, a2), 1) →∗
T2

0 as wanted. For A2

again there is a redex

f2(3, f1(a0, a1)) →∗
T2

0,

but f3(f3(3, a3), 3) 6→∗
T2

0. We add states 5 and 6
for f3(3, a3) and a3, and transitions

a3 → 6, f3(3, 6) → 5, f3(5, 3) → 0.

The resulting automaton is displayed at the right;
it is compatible with top(R) and lift0(TΣ). By Re-
mark 6 we can check compatibility with top(R)
restricted to the signature Σ × {0, 1, 2, 3, 4}, be-
ing a finite system. Since heights ≥ 4 do not oc-
cur, it is even compatible with the infinite system
top(R). So R is top-bounded by 3 as claimed, and
thus terminating.

f0

��

a0 //?>=<89:;/.-,()*+0
2

33

1

AA

2

]]

1

��

f1
ss

f2

OO

?>=<89:;1
2

oo

1

OO

1
��

f1
oo

f3

>>

?>=<89:;3
2

oo

1

OO

1
��

f2
oo ?>=<89:;2

2

OO

?>=<89:;5

1

OO

f3
oo ?>=<89:;4

2

OO

a1

OO

?>=<89:;6

2

OO

a2

OO

a3

OO

Example 7. For R = {f(f(x, a), a) → f(x, f(x, a))}
we can easily show that it is not top-bounded, as we
have the derivation

tn+2 = f(f(tn, a), a) →R f(tn, f(tn, a)) = f(tn, tn+1)

where t0 = a and tn+1 = f(tn, a). Thus by induction,
tn+2 →∗

R f(tn, f(tn−1, . . . f(a, a) . . .)). This derivation
reaches top height n + 1. However, R is roof-bounded
by 1, as the compatible automaton to the right reveals.

a0

��
??

??
??

f0

��

f1

��

?>=<89:;/.-,()*+0
1

33

1
��

1
oo

1

FF

2

XX

f1
ss

?>=<89:;2 //

2

SS

f1
//?>=<89:;1

2

OO

a1

OO

Example 8. Let R = {f(a, f(x, a)) → f(a, f(f(a, a), x))}. As before, we start
with the one-state automaton with transitions {a0 → 0, f0(0, 0) → 0}, accept-
ing lift0(TΣ). There is a redex match f0(a0, f(0, a0)) → f0(0, 0) → 0 so we
have to ensure that f1(a1, f1(f1(a1, a1), 0)) →∗ 0. This is done by adding states

9

{1, 2, 3, 4, 5} and transitions {a1 → 1, a1 → 4, a1 → 5, f1(4, 5) → 3, f1(3, 0) →
2, f1(1, 2) → 0}. This produces another redex f1(a1, f1(3, a0)) →∗ f1(1, 2) → 0
which requires f1(a1, f1(f1(a1, a1), 3)) →∗ 0. Note that a0 in the redex has min-
imal height, and thus the labels in the contractum are 1. This requirement can
be fulfilled by adding the transition f1(3, 3) → 2, since then

f1(a1, f1(f1(a1, a1), 3)) →∗ f1(1, f1(f1(4, 5), 3)) → f1(1, f1(3, 3)) → f1(1, 2) → 0.

Note that this is a state re-use corresponding to the choice rσ = D[C[t1, t2]]
with t1 = f1(a1, a1) →∗ 3 = q1, t2 = 3 = q2, C = f1(�,�), D = f1(a1,�),
q0 = 2, D[q0] →∗ 0 = q. The resulting automaton is compatible with match(R)
and lift0(TΣ), thus R is match-bounded by 1, and therefore terminating.

In general, if we want a compatible automaton for L = TΣ , then we may
simply start with the automaton for L that has just one state q, which is
also final, and for each symbol f ∈ Σ, a transition f(q, . . . , q) → q. Doing
so fails to distinguish between symbols, and this might cause non-termination
of completion. In such cases it is better to “split” the automaton. We then take
Q = F = {qf | f ∈ Σ}, and transitions {f(q1, . . . , qn) → qf | f ∈ Σ, qi ∈ Q}.

For the following example a termination proof via top heights can be obtained
by completion starting with the split automaton, but not starting with the one-
state automaton.

Example 9. (AProVE-forward instantiation2, [14]) Consider the system

R = {f(x, y, z) → g(x, y, z), g(d, e, x) → f(x, x, x), a → b, a → c}.

over signature Σ = {a, b, c, d, e, f, g}. Completion does not stop if we start with
an automaton for lift0(TΣ) with only one state q: We find a redex f0(q, q, q) → q,
so we have to add the transition g1(q, q, q) → q. Since g1(d, e, q) →2

R g1(q, q, q) →
q, we have to add f2(q, q, q) → q, and so forth, creating symbols g3, f4, g5,

Completion does succeed if we start with a split automaton. It has 7 states
in Q = {qa, qb, qc, qd, qe, qf , qg}, and all symbols are labelled by 0. Because of
the rules {a → b, a → c}, we add transitions b1 → qa, c1 → qa. Due to the rule
f(x, y, z) → g(x, y, z) we add 73 transitions {g1(qx, qy, qz) → qf | qx, qy, qz ∈ Q},
and due to rule g(d, e, x) → f(x, x, x) we add {f2(q, q, q) → qg | q ∈ Q}. Rule
f(x, y, z) → g(x, y, z) entails the transitions {g3(q, q, q) → qf | q ∈ Q}. The
result is a compatible automaton, so 3 is a top bound, and R is terminating.

6 Simulating Forward Closures by Rewriting

Forward closures [13] can be used to characterize uniform termination by termi-
nation on a restricted set of terms: For a right-linear [4] or non-overlapping [10]
term rewriting system R, termination is equivalent to termination on the set
RFC(R) of right-hand sides of forward closures.

Following [10], we inductively define the set RFC(R) as the least subset of
TΣ(X) that contains rhs(R), is closed under renaming of variables, and satisfies
the condition:

10

– if t ∈ RFC(R), p ∈ PosΣ(t), (` → r) ∈ R, ` variable-disjoint with t, µ a most
general unifier of t|p and `, then (t[r]p)µ ∈ RFC(R).

Next, we will show how to simulate the construction of RFC(R) by ordinary
rewriting. Note that since we simulate unification by matching, we cannot cope
with non-linearity in left- or right-hand sides. So for the rest of this section we
consider linear rewrite rules only, i.e., rules with linear left- and right-hand sides.

Let C ∈ TΣ(X) be linear, and let α : X → TΣ(X) be a substitution with
dom(α) ⊆ X(C). We say that (C,α) is a factorization of t ∈ TΣ(X) if t = Cα,
and we call C the context of the factorization. The factorization is non-trivial if
C /∈ X, dom(α) 6= ∅, and xα /∈ X for every x ∈ dom(α). In order to mark the
border between the context and the substitution of a factorization, we use the
constant], not contained in Σ. Let the substitution σ] : X → TΣ∪{]} be defined
by σ] : x 7→] for x ∈ X.

Definition 9. For a linear TRS R define the TRS R] over Σ ∪ {]} by

R] = R ∪ {Cσ′α → rσ′′ | ` → r ∈ R, (C,α) a non-trivial factorization of `,

σ′ = σ]|dom(α) and σ′′ = σ]|X(ran(α))}.

That is, R] consists of all rules obtained in the following way. If ` → r is a rule
in R and (C,α) is a non-trivial factorization of `, then `′ → r′ is a rule in R],
where `′ is obtained from C by replacing every variable in dom(α) by], and r′

is obtained from r by replacing every variable that occurs in ran(α) by]. Note
that R] is linear, and that X(r) ⊆ X(`) for each rule ` → r in R].

Example 10. For R = {g(f(h(x), h(y))) → f(y, x)}, the system R] consists of R
together with the rules

g(]) → f(],]), g(f(],])) → f(],]),
g(f(], h(y))) → f(y,]), g(f(h(x),])) → f(], x).

For R = {g(x) → x} we get R] = R, for R = {g(g(x)) → x} we have R] =
R ∪ {g(]) →]}, and for R = {g(g(x)) → a} we obtain R] = R ∪ {g(]) → a}.

Replacing variables by], we can now characterize RFC(R) as the set of
descendants modulo R] of rhs(R), provided R is linear:

Lemma 6. If R is linear then RFC(R)σ] = →∗
R]

(rhs(R)σ]).

Abbreviate RFC(R)σ] by RFC](R). A self-contained proof of the following
theorem can be found in the appendix.

Theorem 1. Let R be a linear term rewriting system. Then

SN(→R) if and only if SN(RFC](R),→R).

Corollary 1. If a linear term rewriting system R is match-bounded for RFC](R),
then R is terminating.

11

Proof. If R is match-bounded for RFC](R) then R is terminating on RFC](R)
by Proposition 2, thus terminating by Theorem 1. ut

Remark 7. In general we do not have SN(→R) iff SN(rhs(R)σ],→R]
). As a

counter-example consider the terminating system R = {g(g(x)) → g(x)}. Here,
R] = R ∪ {g(]) → g(])} is non-terminating on rhs(R)σ] = {g(])}.

Theorem 1 cannot be generalized to left-linear and non-overlapping systems:

Example 11. For R = {f(a, x) → f(x, x)} we get R] = R ∪ {f(], x) → f(x, x)}.
Obviously, R is terminating on RFC](R) = →∗

R]
({f(],])}) = {f(],])}, but not

terminating.

7 Compatible Automata and Forward Closures

According to Corollary 1, termination of R can be shown by verifying that R is
match-bounded for RFC](R). Literally following the definition, we would first
construct an automaton A with RFC](R) ⊆ L(A), that is, A should be compat-
ible with R] and rhs(R)σ]. Then we find an automaton A′ that is compatible
with some enrichment R′ of R, and a suitable language L′ with L(A) ⊆ base(L′).
Since R is linear, we want to use R′ = match(R) and L′ = lift0(L(A)).

We can merge these two automata constructions into one. To do so, we need
an additional, trivial enrichment that completely disregards heights in left-hand
sides and assigns height 0 everywhere in the right-hand sides.

Definition 10. For a term rewriting system R over Σ, the enrichment zero(R)
over Σ × N is defined by

zero(R) = {`′ → lift0(r) | (` → r) ∈ R, base(`′) = `}.

Lemma 7. For TRSs R and S and a language L over Σ, if a finite tree au-
tomaton A over Σ ×N is compatible with match(R)∪ zero(S) and lift0(L), then
R is match-bounded for →∗

R∪S (L).

Proof. We will show that R is match-bounded for →∗
R∪S (L) by c, where c is the

maximal height occurring in L(A), which exists since A is assumed to be finite.
Consider a derivation t1 →∗

R t2 with t1 ∈ →∗
R∪S(L), and its canonical lifting

t′1 →∗
match(R) t′2. We have to show that the maximal height in t′2 is ≤ c.

Define the relation ≤ on TΣ×N by s ≤ t if base(s) = base(t) and for each
position p in s, height(s(p)) ≤ height(t(p)).

t′′0
∗

match(R)∪zero(S)
// t′′1

∗
match(R)

// t′′2 ∈ L(A)

t′1
∗

match(R)
//

≤

t′2
base

��

≤

L 3 t0
∗

R∪S
//

lift0

OO

t1
∗

R
//

lift0

OO

t2

12

Since t1 ∈ →∗
R∪S(L), there is a term t0 ∈ L such that t0 →∗

R∪S t1. For the
canonical lifting t′′0 →∗

match(R)∪zero(S) t′′1 of the derivation t0 →∗
R∪S t1 we have

base(t′′1) = t1 = base(t′1), therefore t′1 ≤ t′′1 . Now there are two canonical lift-
ings of the derivation t1 →∗

R t2, both starting in terms with the same base:
t′1 →∗

match(R) t′2 and t′′1 →∗
match(R) t′′2 . From t′1 ≤ t′′1 we obtain t′2 ≤ t′′2 by mono-

tonicity, cf. Remark 2. We have t′′2 ∈ L(A) by compatibility, since t′′0 ∈ lift0(L)
and t′′0 →∗

match(R)∪zero(S) t′′2 . Therefore the maximal height in t′′2 is ≤ c, and by
t′2 ≤ t′′2 the same is true for t′2. ut

Choosing S = R] \ R and L = rhs(R)σ], in combination with Corollary 1
and Lemma 6 this will be used as follows.

Corollary 2. For a linear TRS R, if some finite tree automaton is compatible
with match(R) ∪ zero(R] \R) and lift0(rhs(R)σ]), then R is terminating.

Example 12. The system R = {f(f(a, x), a) → f(a, f(x, a))} is not match-
bounded. This can be seen as follows. Writing Rhx for fh(ah, x), and Lhx for
fh(x, ah), we have match(R)-derivations

Ln
0Rn

0 a0 →∗ R1R2 . . . RnLn . . . L2L1a0

for each n ≥ 0, exceeding any given bound. On the other hand, the system is
match-bounded for RFC](R): We have

R] =

 f(],]) → f(a, f(], a)), f(f(], x),]) → f(a, f(x, a)),
f(f(a, x),]) → f(a, f(x, a)), f(], a) → f(a, f(], a)),
f(f(], x), a) → f(a, f(x, a))

and rhs(R)σ] = {f(a, f(], a))}. This can be accepted by an automaton with
states Q = {0, 1, 2, 3, 4}, F = {1}, and transitions {a0 → 2,]0 → 0, a0 →
4, f0(0, 4) → 3, f0(2, 3) → 1}. There is only one redex match for match(R) ∪
zero(R] \ R), namely f0(]0, a0) → f0(0, 4) → 3. So we need to ensure that
f0(a0, f0(]0, a0)) →∗ 3, This can be achieved by adding the single transition
f0(4, 3) → 3, because then f0(a0, f0(]0, a0)) →∗ f0(4, f0(0, 4)) → f0(4, 3) →
3. The resulting automaton is compatible with match(R) ∪ zero(R] \ R). In
particular, no rule of match(R) matches in the automaton. So the automaton
certifies that R is match-bounded for RFC](R) by 0, and thus the system is
terminating. Termination of R can also be proved by standard methods.

Example 13. Take R = {f(a, f(a, x)) → f(a, f(x, f(f(a, a), a)))}. Here, the set
of descendants of rhs(R)σ] modulo R] is actually finite:

{f(a, f(], f(f(a, a), a))), f(a, f(f(f(a, a), a), f(f(a, a), a)))}.

Since match(R) does not match at all, it is match-bounded for RFC](R) by 0.

13

8 Conclusion

In this paper, we presented a new automated method for termination proofs in
term rewriting: constructing compatible tree automata for systems enriched by
height annotations. We offered three enrichment schemes – top, roof, and match
– which are increasingly more powerful. We demonstrated that match-bounds
on the set of right-hand sides of forward closures can be even more powerful
for linear TRSs. In contrast to string rewriting, match-bounded systems do not
preserve regular languages for term rewriting.

The power of standard methods, like path orderings and interpretations,
markedly decreases for small signatures. The fewer symbols there are, the fewer
orderings and statuses there are to choose from. To improve this situation, people
develop methods that encode additional information into the signature. This can
be semantic information (as in semantic labelling, e.g.), or syntactic information
(as in dependency pairs, e.g.). Our method belongs to the latter category, for
the construction of compatible automata can be seen as a detailed analysis of
overlap patterns. An earlier use of tree automata for analyzing rewrite patterns
is Middeldorp’s estimation of dependency graphs [15].

The algorithms described in this paper have been implemented in the pro-
gram Matchbox. It is a highly configurable testbed for string and term rewriting
with height annotations. The string rewriting version has been described in [17].
Our program is freely available (Haskell source, GNU/Linux executable, CGI
interface) via http://141.57.11.163/matchbox/.

An earlier version of Matchbox took part in the Termination Competition
during WST04. It solved part of the problems from the contest data base. Since
Matchbox does not implement any of the standard methods for automated ter-
mination, this illustrates the power of our approach.

The present paper provides known (Example 9) and new (Examples 8, 13)
termination problem instances that Matchbox can solve but that other available
automated provers cannot. We checked with CiME [3], AProVE [11], TTT [12].

Acknowledgements. We thank the anonymous referees for carefully reading
the paper and suggesting improvements. Thanks to Vincent van Oostrom for
pointing out the relation to bisimulation and rewriting labellings.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

2. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. 1997–2001. Available
at http://www.grappa.univ-lille3.fr/tata/.

3. E. Contejean, C. Marché, B. Monate, and X. Urbain. Proving Termination of
Rewriting with CiME, In A. Rubio (Ed.), Proc. 6th Int. Workshop on Termination
WST-03, Technical Report DSIC II/15/03, pp. 71–73, Universidad Politécnica de
Valencia, Spain

14

4. N. Dershowitz. Termination of linear rewriting systems. In S. Even and O. Kariv
(Eds.), Proc. 8th Int. Coll. Automata, Languages and Programming ICALP-81, Lec-
ture Notes in Comput. Sci. Vol. 115, pp. 448–458. Springer-Verlag, 1981.

5. F. Gécseg and M. Steinby. Tree Languages. In G. Rozenberg and A. Salomaa (Eds.),
Handbook of Formal Languages, Vol. 3, pp. 1–68. Springer-Verlag, 1997.

6. T. Genet. Decidable approximations of sets of descendants and sets of normal forms.
In T. Nipkow (Ed.), Proc. 9th Int. Conf. Rewriting Techniques and Applications
RTA-98, Lecture Notes in Comput. Sci. Vol. 1379, pp. 151–165. Springer-Verlag,
1998.

7. A. Geser, D. Hofbauer and J. Waldmann. Match-bounded string rewriting systems.
Appl. Algebra Engrg. Comm. Comput. 15(3-4):149–171, 2004.

8. A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. Tree automata that certify
termination of term rewriting systems. In M. Codish and A. Middeldorp (Eds.),
Proc. 7th Int. Workshop on Termination WST-04, Aachener Informatik Berichte
AIB-2004-07, RWTH Aachen, Gemany, pp. 14–17, 2004.

9. A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. Finding finite automata that
certify termination of string rewriting. In M. Domaratzki, A. Okhotin, K. Salomaa,
and S. Yu (Eds.), Proc. 9th Int. Conf. Implementation and Application of Automata
CIAA-04, Lecture Notes in Comput. Sci. Vol. 3317, pp. 134–145. Springer-Verlag,
2004.

10. O. Geupel. Overlap closures and termination of term rewriting systems. Technical
Report MIP-8922, Universität Passau, Germany, 1989.

11. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated termination
proofs with AProVE. In V. van Oostrom (Ed.), Proc. 15th Int. Conf. Rewriting
Techniques and Applications RTA-04, Lecture Notes in Comp. Sci. Vol. 3091, pp.
210–220. Springer-Verlag, 2004.

12. N. Hirokawa and A. Middeldorp. Tsukuba Termination Tool. In R. Nieuwenhuis
(Ed.), Proc. 14th Int. Conf. Rewriting Techniques and Applications RTA-03, Lecture
Notes in Comp. Sci. Vol. 2706, pp. 311–320. Springer-Verlag, 2003.

13. D.S. Lankford and D.R. Musser. A finite termination criterion. Unpublished draft,
Information Sciences Institute, University of Southern California, Marina-del-Rey,
CA, 1978.

14. C. Marché and A. Rubio (Eds.) Termination Problems Data Base. 2004. http:

//www.lri.fr/~marche/wst2004-competition/tpdb.html
15. A. Middeldorp. Approximations for strategies and termination. In Proc. 2nd Int.

Workshop on Reduction Strategies in Rewriting and Programming, Electron. Notes
Theor. Comput. Sci. 70(6), 2002.

16. V. van Oostrom and R. de Vrijer. Equivalences of Reductions. In Terese, Term
Rewriting Systems, pp. 301–474. Cambridge Univ. Press, 2003.

17. J. Waldmann. Matchbox: a tool for match-bounded string rewriting, In V. van
Oostrom (Ed.), Proc. 15th Int. Conf. Rewriting Techniques and Applications RTA-
04, Lecture Notes in Comp. Sci. Vol. 3091, pp. 85–94. Springer-Verlag, 2004.

18. H. Zantema. TORPA: Termination of rewriting proved automatically. In V. van
Oostrom (Ed.), Proc. 15th Int. Conf. Rewriting Techniques and Applications RTA-
04, Lecture Notes in Comp. Sci. Vol. 3091, pp. 95–104. Springer-Verlag, 2004. Up-
dated version accepted for J. Automat. Reason..

19. H. Zantema. Termination. In Terese, Term Rewriting Systems, pp. 181–259. Cam-
bridge Univ. Press, 2003.

20. H. Zantema. Termination of string rewriting proved automatically. Accepted for
J. Automat. Reason., 2005.

15

Appendix

Here we give a self-contained proof of Theorem 1. It follows the lines of the sketch
from [4]. A similar proof can be found in [20] for the case of string rewriting,
but with a slightly different definition of R]. Throughout, we consider linear (i.e.
left- and right-linear) rules only.

Let � and] be a unary and a constant symbol respectively not contained
in Σ. Both symbols will be used to mark the border between the context and
the substitution of a factorization. The first symbol keeps the substitution part,
whereas the second symbol truncates it. Define the substitutions σ� : X →
TΣ∪{�}(X) and σ] : X → TΣ∪{]} by σ� : x 7→ �(x) and σ] : x 7→] for x ∈ X.
Let h] : TΣ∪{�}(X) → TΣ∪{]}(X) denote the term morphism that replaces
every subterm with top-symbol � by the constant], i.e., where h](�(t)) =] and
h](f(t1, . . . , tn)) = f(h](t1), . . . , h](tn)) for f 6= �. Now we can define the term
rewriting system

Ra = {Cσ′α → rσ′′ | ` → r ∈ R, (C,α) a non-trivial factorization of `,

σ′ = σ�|dom(α) and σ′′ = σ�|X(ran(α))}

over signature Σ ∪ {�} and the term rewriting system

R] = R ∪ h](Ra)

over signature Σ ∪ {]}. Note that both Ra and R] are linear, and that X(r) ⊆
X(`) for each rule ` → r in Ra or in R].

Example 14. For R = {g(f(h(x), h(y))) → f(y, x)}, the system Ra contains

g(�(f(h(x), h(y)))) → f(�(y),�(x)), g(f(�(h(x)),�(h(y)))) → f(�(y),�(x)),
g(f(�(h(x)), h(y))) → f(y,�(x)), g(f(h(x),�(h(y)))) → f(�(y), x),

and the system R] consists of R together with

g(]) → f(],]), g(f(],])) → f(],]),
g(f(], h(y))) → f(y,]), g(f(h(x),])) → f(], x).

For R = {g(x) → x} we get Ra = ∅ and R] = R. For R = {g(g(x)) → x}
we have Ra = {g(�(g(x))) → �(x)} and R] = R ∪ {g(]) →]}. Finally, for
R = {g(g(x)) → a} we obtain Ra = {g(�(g(x))) → a} and R] = R∪{g(]) → a}.

Let S consist of all ground terms over Σ ∪ {�} where each path from a
leaf to the root contains at most one occurrence of the symbol �, that is, S =
{Cσ�α | (C,α) ∈ F} where F denotes the set of all factorizations of ground
terms over Σ. Note that C might be ground for (C,α) ∈ F ; in this case we have
Cσ�α = C. (We could also write S = TΣ(�(TΣ)), using the standard notation

16

f(T) = {f(t) | t ∈ T} for T ⊆ TΣ .) On S we consider two relations that describe
active and non-active rewriting respectively, defined by

a→R = {(Cσ�α, C ′σ�α) | (C,α) ∈ F, C →R C ′} ∪ (→Ra ∩ S × S),
na→R = {(Cσ�α, Cσ�α′) | (C,α) ∈ F, α →R α′}.

Note that non-active steps always occur below an occurrence of the symbol �,
whereas for active steps this is impossible.

The first lemma describes commutation between active and non-active steps.

Lemma 8. a→R ◦ na→R ⊆ na→R ◦ a→R.

Proof. Let Cσ�α
a→R C ′σ�α′

na→R C ′σ�α′′ where α′ →R α′′. The first rewriting
step is modulo →R∪→Ra , the second one modulo →R. Since the claim is trivially
true if these steps occur at parallel positions, we may assume the second step to
occur below the first one. There are two cases for the active step: If C →R C ′

and α = α′ then Cσ�α
na→R Cσ�α′′

a→R C ′σ�α′′. Otherwise, stripping off the
context of the first step, the given derivation has the form

C̄σ�ᾱβ →Ra rσ�|X(ran(ᾱ))β
na→R rσ�|X(ran(ᾱ))β

′

where (C̄, ᾱ) is an non-trivial factorization of ` for some rule ` → r in R, and
where β →R β′ for substitutions β, β′ with domain X(ran(ᾱ)). Then we have

C̄σ�ᾱβ
na→R C̄σ�ᾱβ′ →Ra rσ�|X(ran(ᾱ))β

′

by left-linearity of Ra. ut

In the setting of abstract reduction systems, the following lemma describes
how an infinite reduction modulo a→R ∪ na→R can be transformed into an infinite
active reduction.

Lemma 9. Let ρ and σ be relations on a set S such that σ ◦ ρ ⊆ ρ ◦ σ, and let
s ∈ S satisfy SN(s, ρ) and ∞(s, ρ ∪ σ). Then there exists t ∈ S satisfying s ρ∗ t
and ∞(t, σ).

Proof. Write P (s) for the property to be proven. Since SN(s, ρ) we may prove
this by Noetherian induction, i.e. for proving P (s) we may assume the induction
hypothesis P (s′) for s ρ s′. Consider an infinite chain modulo ρ ∪ σ starting in
s. In case it does not contain any ρ step we may choose t = s and we are done.
Otherwise, the chain starts by s σ∗ s ρ s̃ where ∞(s̃, ρ ∪ σ). Using σ ◦ ρ ⊆ ρ ◦ σ
one easily proves σ∗ ◦ ρ ⊆ ρ ◦ σ∗ by induction, hence we obtain s′ satisfying
s ρ s′ σ∗ s̃. Now clearly SN(s′, ρ) and ∞(s′, ρ ∪ σ), hence by the induction
hypothesis P (s′) we obtain t ∈ S satisfying s ρ s′ ρ∗ t and ∞(t, σ). ut

The next lemma relates →R and a→R ∪ na→R.

17

Lemma 10. If ∞(t,→R) for t ∈ TΣ then ∞(Cσ�α,
a→R ∪ na→R) for any factor-

ization (C,α) of t.

Proof. From the definition of a→R ∪ na→R it follows that if Cα →R t′ then there
exist a factorization (C ′, α′) of t′ such that Cσ�α (a→R ∪ na→R) C ′σ�α′. Repeat-
ing this, an infinite reduction modulo →R starting in Cα is transformed into an
infinite reduction modulo a→R ∪ na→R starting in Cσ�α. ut

Lemma 11. If ∞(→R) then ∞(t, a→R) for some ground instance t of a term in
rhs(R)σ�.

Proof. The claim is trivially true if X ∩ lhs(R) 6= ∅, so we may assume the
contrary. Choose g ∈ TΣ of minimal size satisfying ∞(g,→R), and let g =
f(g1, . . . , gn) for f ∈ Σn, n ≥ 0. Then SN(gi,→R) for 1 ≤ i ≤ n, thus an infinite
reduction starting in g is of the shape

g = f(g1, . . . , gn) →∗
R f(g′1, . . . , g

′
n) = `γ →R rγ →R · · ·

for some rule ` → r in R, a ground substitution γ, and ground terms g′i satisfying
gi →∗

R g′i. We have ∞(rγ,→R), and from SN(gi,→R) and gi →∗
R g′i we get

SN(g′i,→R). Since each term in X(r)γ is a subterm of some term g′i we have
SN(X(r)γ,→R). Now we apply Lemma 9 to s = rσ�γ, ρ = na→R, and σ = a→R.
The conditions are fulfilled due to Lemma 8, Lemma 10, and the observation
that SN(s, na→R) follows from SN(X(r)γ,→R). Hence there exists t ∈ S satisfying
s

na→R
∗

t and ∞(t, a→R). Since s = rσ�γ
na→R

∗
t we can write t = rσ�γ′ for some

ground substitution γ′, concluding the proof. ut

As an immediate consequence of the respective definitions, we can relate R]

to a→R.

Lemma 12. If Cσ�α
a→R C ′σ�α′ for Cσ�α, C ′σ�α′ ∈ S then Cσ] →R]

C ′σ].
In fact then we have either C →R C ′ and α′ = α|dom(α′) with dom(α′) ⊆ dom(α),
or Cσ] →R]

C ′σ] and
∑

x∈dom(α) size(xα) >
∑

x∈dom(α′) size(xα′).

Theorem. Let R be a linear term rewriting system. Then

SN(→R) if and only if SN(→∗
R]

(rhs(R)σ]),→R).

Proof. For the non-trivial ‘if’-part assume R is non-terminating. By Lemma 11
we have ∞(t, a→R) for some term t = rσ�γ with r ∈ rhs(R) and γ a ground
substitution with domain X(r). Write the corresponding infinite reduction as

t = C0σ�γ0
a→R C1σ�γ1

a→R C2σ�γ2
a→R · · · .

By Lemma 12, for every i we have Ci →R Ci+1, or we know that Ciσ] →R]

Ci+1σ] and
∑

x∈dom(γi)
size(xγi) >

∑
x∈dom(γi+1)

size(xγi+1). This latter case
occurs only finitely often (at most

∑
x∈dom(γ0)

size(xγ0) times), say not after the
k-th step. By Lemma 12 we have C0σ] →∗

R]
Ckσ], i.e., Ckσ] ∈ →∗

R]
(rhs(R)σ]).

Therefore this gives rise to an infinite reduction modulo R starting from Ckσ],
contradicting the assumption SN(→∗

R]
(rhs(R)σ]),→R). ut

18

