
Submitted to the International Conference on Rewriting Techniques and Applications
http://rewriting.loria.fr/rta/

POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS

JOHANNES WALDMANN

Hochschule für Technik, Wirtschaft und Kultur (FH) Leipzig, Fakultät IMN, PF 30 11 66, D-04251
Leipzig, Germany.

Abstract. Matrix interpretations can be used to bound the derivational complexity of
rewrite systems. We present a criterion that completely characterizes matrix interpreta-
tions that are polynomially bounded. It includes the method of upper triangular inter-
pretations as a special case, and we prove that the inclusion is strict. The criterion can
be expressed as a finite domain constraint system. It translates to a Boolean constraint
system with a size that is polynomial in the dimension of the interpretation. We report
on performance of an implementation.

1. Introduction

Algorithms with polynomial complexity are widely accepted as practical. Since rewrit-
ing is a model of computation, we are interested in polynomial derivational complexity of
rewriting. The derivational complexity of a (terminating) rewrite system is the length of a
longest derivation in the system, measured as a function of the size of its initial term.

For a given terminating rewrite system, one can estimate its derivational complexity
by looking at the proof method that established termination. We investigate the method of
matrix interpretations [Hof06, End08]. If a rewrite system admits a matrix interpretation
that is strictly compatible with all rules, then its derivational complexity is at most expo-
nential. By restricting the shape of the matrices, we can lower this bound: if the matrices
are upper triangular, derivational complexity is polynomial [Mos08].

Matrix interpretations are in fact weighted finite tree automata [Wal09], and an upper
bound on the derivational complexity of the rewrite system is obtained from a bound for
the growth of of the weight function computed by the automaton. So it is natural to use
automata-theoretic results for a more detailed analysis. We can apply methods for the
determination of (non-)ambiguity of classical (non-weighted) automata. The connection is
immediate since a weighted automaton (over the standard semi-ring of natural numbers
with standard addition and multiplication) can be seen as a path-counting device for an
underlying classical automaton.

The core of the paper is organized as follows. We show in Section 3 that it is enough
to consider weighted word automata even if the object is term rewriting. In Section 4 we
reduce the question of growth of a weighted automaton to the question of ambiguity of

1998 ACM Subject Classification: F.4.2 [Grammars and Other Rewriting Systems] Term Rewriting,
F.1.1 [Models of Computation] Weighted Automata, F.1.3 [Complexity Measures and Classes] Machine-
independent Complexity, D.3.3 [Language Constructs and Features] Constraints.

Key words and phrases: derivational complexity of rewriting, matrix interpretation, weighted automata,
ambiguity of automata, finite domain constraints.

c© POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS
Confidential — submitted to RTA

2 POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS

non-weighted automata. Then in Section 5 we give an algorithm that decides polynomial
growth of an automaton. In Section 6 we show a rewriting system that has a polynomially
bounded matrix interpretation, but no triangular matrix interpretation. In Section 7 we
discuss the degree of the polynomial growth bounds. We then explain in Section 8 how
the decision algorithms can be realized by finite domain constraint systems, and how these
can be transformed to constraints in propositional logic. In Section 9 we report on the
performance of an implementation of our method.

2. Notation and Preliminaries

We recall some notions and notations.
Terms and Rewriting [Baa98]. For a ranked signature Σ = Σ0 ∪ . . .∪Σk, we denote by

Term(Σ, V) the set of terms over Σ with variables from a set V , and Term(Σ) := Term(Σ, ∅).
The size of a ground term is the total number of symbol occurrences: if f ∈ Σk, then
|f(t1, . . . , tk)| = 1 + |t1|+ . . .+ |tk|.

We use paths to address subterms. A path is a sequence of steps, and a step is a pair of a
function symbol and a number. The number indicates in which subtree the path continues.
Formally, from the given ranked signature Σ, we construct a path signature Σ′ ⊆ Σ× N of
unary symbols: for each f ∈ Σ of arity k, we have symbols (f, 1), . . . , (f, k) in Σ′. We often
abbreviate (f, i) by fi. For t ∈ Term(Σ, V), the set of all paths from the root of t to any
node is

Path(f(t1, . . . , tk)) = {ε} ∪
⋃
{(f, i) · p | 1 ≤ i ≤ k, p ∈ Path(ti)}.

E.g., Path(f(a, g(b))) = {ε, (f, 1), (f, 2), (f, 2)(g, 1)}. Note that |t| = |Path(t)|, the size of t
is the number of paths in t. We write tp for the function symbol that is reached by following
the path p ∈ Path(t):

(f(. . .))ε = f, (f(t1, . . . , tk))(f,i)·w = (ti)w.

A rewrite system R is a set of pairs of terms with variables, and it defines a rewrite
relation →R in the usual way.

The derivational complexity [Hof89] of a terminating rewrite system R is the function

dcR : N+ → N : n 7→ max{k | ∃t1, t2 ∈ Term(Σ) : |t1| ≤ n ∧ t1 →k
R t2}.

Matrix Interpretations [End08]. Let Nd denote the set of d-dimensional vectors with
entries in N. We picture these as column vectors. We use these orders on Nd:

x ≥ y ⇐⇒ x1 ≥ y1 ∧ . . . ∧ xd ≥ yd, x > y ⇐⇒ x ≥ y ∧ x1 > y1.

We use k-ary linear functions F : (Nd)k → Nd that are given by k square matrices
M1, . . . ,Mk and a vector v via

F : (x1, . . . , xk) 7→M1x1 + . . .+Mkxk + v.

We call v the absolute part of F , and write v = abs(F). A linear function is monotone (with
respect to >, in each argument separately) iff for each i, the top left entry of Mi is ≥ 1.

We define orderings on these functions. For F given by (M1, . . . ,Mk, v) and F ′ given
by (M ′1, . . . ,M

′
k, v
′), we write

F ≥ F ′ ⇐⇒ v ≥ v′ ∧ ∀1 ≤ i ≤ k : Mi ≥M ′i
F > F ′ ⇐⇒ v > v′ ∧ F ≥ F ′

POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS 3

For any tuple of argument vectors ~x = (x1, . . . , xk), we have F ≥ F ′ ⇒ F (~x) ≥ F ′(~x) and
F > F ′ ⇒ F (~x) > F ′(~x).

A matrix interpretation assigns to each k-ary function symbol f ∈ Σk a k-ary linear
function [f] : (Nd)k → Nd. Since linear functions of this shape are closed with respect
to composition (substitution), an interpretation can be extended from function symbols to
terms (with variables).

We say an interpretation [·] is compatible with a rewrite rule l→ r iff [l] > [r].

Example 2.1. Take Σ = Σ1 = {a, b}, and the monotone interpretation

[a] : x 7→
(

1 1
0 1

)
x, [b] : x 7→

(
1 0
0 1

)
x+

(
0
1

)
,

that is compatible with R = {ab→ ba}, since

[ab] : x 7→
(

1 1
0 1

)
x+

(
1
1

)
> [ba] : x 7→

(
1 1
0 1

)
x+

(
0
1

)
.

If a monotone interpretation is compatible with each rule of a rewrite system R, then
t1 → t2 implies [t1] > [t2] and since > is well-founded on Nd, the system R is terminating.
More specifically, the length of each rewrite sequence starting in some t ∈ Term(Σ) is
bounded by the first (top) component of [t]. This follows from the definition of > on Nd.
We define the growth of the matrix interpretation [·] by growth[] : n 7→ max{[t]1 | t ∈
Term(Σ), |t| ≤ n}. Then the derivational complexity of a rewriting system R is bounded by
the growth of any matrix interpretation that is compatible with R.

Weighted Automata [Dro09]. We use automata with weights in N, corresponding to
matrix interpretations. We only need word (not tree) automata.

A N-weighted word automaton A = (Q,λ, µ, δ) over signature Σ consists of mappings

λ : Q→ N, µ : Σ→ Q2 → N, δ : Q→ N,
where we picture states as numbers, Q = {1, . . . , d}, and λ ∈ N1×d is the (row) vector
of initial weights, for each letter c ∈ Σ, µ(c) ∈ Nd×d is a (square) transition matrix, and
δ ∈ Nd×1 is the (column) vector of final weights. We extend µ homomorphically from letters
to words by µ(u · v) = µ(u) · µ(v). For a word w ∈ Σ∗, we denote by A(p, w, q) the entry
at position (p, q) in the matrix µ(w). If a = A(p, w, q), then we also write p w:a→A q, and we
define p w→A q as A(p, w, q) > 0. The weight A(w) computed by A for a word w ∈ Σ∗ is
given by λ · µ(w) · δ. The growth function growthA of an N-weighted automaton A over Σ
is defined as the function n 7→ max{A(w) | w ∈ Σn}.

For a signature of unary function symbols (as in string rewriting), a d-dimensional
matrix interpretation is a weighted automaton in this sense. It has states Q = {1, . . . , d, d+
1}. We have λ = (1, 0, . . . , 0) (the initial state is 1) and δ = (0, . . . , 0, 1)T (the final state
is d + 1), and for c ∈ Σ, we construct µ(c) as follows: The interpretation of c is given by
[c] : x 7→ M1x + v, for a matrix M1 ∈ Nd×d and a vector v ∈ Nd. From that we define

µ(c) =
(

M v
0 . . . 0 1

)
∈ N(d+1)×(d+1). Then for any w ∈ Σ∗, the weight A(w) computed by

the automaton is equal to the first (top) entry of the value [w] of w under the interpretation.

4 POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS

Example 2.2. [continued] The transition matrices of the automaton are given on the left,
and a pictorial representation is shown on the right:

µ(a) =

1 1 0
0 1 0
0 0 1

 , µ(b) =

1 0 0
0 1 1
0 0 1

 ,
1 // ?>=<89:;1

a:1 //

a:1

b:1

TT

?>=<89:;2
b:1 //

a:1

b:1

TT

?>=<89:;3
1 //

a:1

b:1

TT

One can now see that A (as a classical automaton) corresponds to the regular expression
Σ∗aΣ∗bΣ∗, and as a weighted automaton it computes, for input w, the number of index
pairs (i, j) with i < j such that wi = a ∧ wj = b, equivalently, the number of inversions
(with respect to b < a). This is exactly the function that is needed in the termination proof
of R = {ab→ ba}.

3. Terms and Words

In this section we show that in order to bound the growth of a matrix interpretation
(for a term rewriting system), it is sufficient to bound the growth of a N-weighted word
automaton. The reason is that a matrix interpretation corresponds to a rather restricted
form of tree automaton, called path-separated [Kop09].

From a d-dimensional matrix interpretation [·] over Σ we construct a weighted word
automaton A over the path signature Σ′ ⊂ Σ × N with states QA = {1, . . . , d} by taking
Fi (the matrix that is the factor for the i-th argument in the linear function [f]) as the
transition matrix µA(fi). The initial weight vector λA is (1, 0, . . . , 0), and the final weight
vector δA is obtained as follows. Denote by S the set of absolute parts of the interpretation
{abs[f] | f ∈ Σ}. Then δA(i) is 1 if there is some v ∈ S with v(i) > 0. Otherwise, δA(i) = 0.
This automaton A can be used to bound the growth of the first (top) component [t]1 of the
interpretation of a term t.

Example 3.1. From the interpretation (for the unary signature {a, b}) on the left, we
construct the automaton on the right:

[a] : x 7→

1 1 1
0 1 0
0 0 1

 · x+

0
2
2



[b] : x 7→

1 1 0
0 0 1
0 1 0

 · x+

0
0
1



?>=<89:;2

a:1

1 //

b:1

��

1 // ?>=<89:;1

Σ:1

Σ:1
88rrrrrrrrr

a:1 &&LLLLLLLLL

?>=<89:;3

a:1

TT 1
//

b:1

BB

The final weight vector (indicated by outgoing arrows) is δA = (0, 1, 1)T . State 1 is not final
because the top components of both absolute parts are zero. Note that the absolute parts
of the interpretation are ignored except for their signum.

POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS 5

The following proposition formalizes an argument given in [Mos08] (before Theorem 6).

Proposition 3.2. For a matrix interpretation [·] and the corresponding automaton A, there
is a constant C such that for all t ∈ Term(Σ) we have [t]1 ≤ |t| · C · growthA(|t|).

Proof. By distributivity of matrix multiplication (over addition), the value of the matrix
interpretation of a term t can be written as the sum of the values of matrix products along
paths—and that is exactly what the automaton A computes:

[t] =
∑

p∈Path(t)

µA(p) · abs[tp].

We take C as the maximal entry of vectors in S. Then each v ∈ S is point-wise smaller
or equal to C · δA. Taking the first (top) component of [t] corresponds to multiplication by
λA from the left. In all, [t]1 = λA · [t] ≤

∑
p∈Path(t)C ·A(p) ≤

∑
p∈Path(t)C · growthA(|p|) ≤

|t| · C · growthA(|t|), since |p| ≤ |t| (the length of a path compared to the size of the term).
So the claim follows.

Since Proposition 3.2 introduces a factor |t|, we obtain the following

Theorem 3.3. If growthA (constructed from the matrix interpretation [·]) is bounded by a
polynomial of degree g, then growth[] is bounded by a polynomial of degree g + 1.

We also have a converse. For any p ∈ Σ′∗, there is a set T of terms t ∈ Term(Σ) with
|t| ≤ D(1 + |p|) and p ∈ Path(t) and δA ≤

∑
t∈T abs[tp]. Here, D is the maximal arity of

Σ, and |T | ≤ d, the dimension of the interpretation. The terms in T have the path p as
their “spine”, and some additional nullary symbols. At the end of the spine, there is some
symbol to “cover” some non-zero entry of δA. Then A(p) ≤

∑
t∈T µA(p) ·abs[tp] ≤

∑
t∈T [t]1.

That is, growthA(n) ≤ |T | · growth[](D(1 + n)). If growth[] is polynomially bounded, then
growthA is polynomially bounded.

Remark 3.4. The given translation ignores the entries in the absolute parts of the matrix
interpretation. Indeed they do not influence the degree of the growth polynomial. Referring
to Example 2.2, the present construction would remove state 3 which effectively acts as a
“sink” state (no transition leaves this state). One may wonder whether state 1 could
be ignored as well. In general, this may alter the degree of growth since there could be
transitions from states > 1 to state 1.

4. Growth and Ambiguity

By Theorem 3.3, we will restrict our attention to weighted word automata. In the
present section, we connect the weight function of a weighted automaton to the ambiguity
of a non-weighted automaton. The ambiguity of a (non-weighted) automaton A is the
function ambA that maps each word w ∈ Σ∗ to the number of accepting computations
(paths) of A on w.

Definition 4.1. Let A by an N-weighted automaton. Obtain the skeleton A′ = skel(A)
by removing all weights. That is, (p, q) is an edge in skel(A) with label c ∈ Σ exactly if
A(p, c, q) > 0. If λA(p) > 0, then p is initial in A. If δA(p) > 0, then p is final in A.

The following observation is immediate.

6 POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS

Proposition 4.2. If all weights in A are from the set {0, 1}, then the growth function of
A and the ambiguity function of skel(A) are identical.

Proof. We use the fact that A(p, w, q) is the sum over the weights of all paths from p to q
labelled w. Given the precondition of the proposition, the weight of a such a path in A is
1 or 0, respectively, if there exists a corresponding path in skel(A) or not, respectively.

We observe now that the weight of an edge can be ignored if it is used at most once.
To this end we define:

Definition 4.3. An edge (p, q) in skel(A) is called recurrent if there is a path from q to p
in skel(A). All other edges are called transitional.

We will apply this notion to edges of weight > 0 in A as well.

Proposition 4.4. Each path p w→ q uses each transitional edge of A at most once.

Proof. Assume p→ q is used twice. Then p→ q →∗ p→ q, and (p, q) is recurrent.

Theorem 4.5. The growth function of A behaves the same (up to a constant factor) as the
growth function of the automaton A′ obtained from A by giving weight 1 to each transitional
edge.

Proof. It is immediate that for all p, w, q: A(p, w, q) ≥ A′(p, w, q). Let N be the number
of transitional edges in A. If N = 0, then there is nothing to show. For N > 0, let W
be the maximal weight of a transitional edge. We claim that A(p, w, q) ≤WN ·A′(p, w, q).
This follows since in each path, each transitional edge can be used at most once, and it
contributes W (multiplicatively).

It is possible to reduce this constant WN but we do not need this here.
We will see (Theorem 5.2, Item 1) that for A to be polynomially bounded, its recurrent

edges have to have weight 1 (and not larger). Together with Proposition 4.5 this means
that when we talk about polynomially bounded N-weighted automata, we do not actually
consider their edge weights in an essential way. This allows to apply known results on
ambiguity, by Proposition 4.2.

5. Deciding Polynomial Growth

In this section, we give an algorithm to decide whether a given N-weighted automaton
has polynomially bounded behaviour. By applying the ideas from Section 4, we transform
the problem to a question of ambiguity of non-weighted automata that can be solved with
known methods. In particular we will apply
Theorem 5.1 ([Web91], Condition EDA). A trim automaton
A over Σ is exponentially ambiguous if and only if there exist a
state q of A and a word w ∈ Σ+ such that there are at least two
different paths q w→A q.

// ?>=<89:;q
w

w

TT

//

Here, a (classical) automaton is trim if each state is useful: it is accessible from some
initial state, and it reaches some final state. For weighted automata A, we define the same
concepts (trim, useful, accessible) by considering skel(A), that is, we use only paths of
weight > 0.

POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS 7

A strongly connected component (SCC) of the automaton A is a maximal set C of
states such that any two p, q ∈ C are connected. Note that an edge (p, q) is recurrent
(Definition 4.3) exactly if p and q belong to a common SCC.

A node is not necessarily connected to itself. Such nodes do not belong to any SCC,
and they are called transitional. The incoming and outgoing edges of these nodes are
transitional edges, as defined earlier. The automaton has a unique decomposition into
SCCs and transitional nodes.

We call an automaton A unambiguous if it “contains no diamond” [Béa08]: there are
no two paths with identical origin, end, and label.

We now characterize growth properties of N-weighted automata:

Theorem 5.2. For a trim N-weighted automaton over Σ,
(1) if there is a recurrent edge with weight > 1, then growth(A) is exponential.
(2) if all recurring edges have weight one, and there is one SCC that is an ambiguous

automaton, then growth(A) is exponential.
(3) if all recurring edges have weight one and each SCC is an unambiguous automaton,

then growth(A) is bounded by a polynomial.

Proof. Item 1: assume there is some edge p x:a→ q with a ≥ 2 in some SCC C. Since the edge
is inside an SCC, there is also a path q w:b→ q with b > 0. Since the automaton is trim, there
is a path i

wi:ai→ p from some initial state i, and a path p
wf :af→ f to some final state. Then

we can compose these paths, where xw gives a loop, and we obtain that for each k ∈ N, the
word wi(xw)kwf has at least weight 2k.

In the following cases, we apply Proposition 4.2.
Item 2: assume there is some SCC C that is ambiguous. So it contains a diamond:

there are states p, q ∈ C and a non-empty word w such that there are two different paths
from p to q labelled w. Since C is strongly connected, there is a path q

w′→ p. This implies
that the condition of Theorem 5.1 holds true (for the state p and the word w ◦w′), and the
automaton C is exponentially ambiguous.

Item 3: follows from Remark 7.3 and Proposition 7.4 below. There we will see that in
this case it does not matter that the unambiguous components are strongly connected.

Example 5.3. The interpretation shown in Example 3.1 is compatible with {ba→ ab, a3 →
ba2b, b4 → a} (SRS/Zantema/z025). The conditions of Theorem 5.2 are fulfilled: SCCs are
{1} and {2, 3}. There are no edges with weight > 1. Each SCC is unambiguous. This
is trivial for the singleton, and {2, 3} is unambiguous since the restrictions of µ(a) and
µ(b) to that component are permutation matrices. Any product of permutation matrices
is again a permutation matrix, and has entries in {0, 1} only. In general, the restriction to
unambiguous components does not need to give a permutation matrix.

6. Comparison to Triangular Method

We prove that our method for proving polynomial derivational complexity is strictly
more powerful than the method of triangular interpretations [Mos08].

We recall that the matrices in a triangular interpretation must have zeroes below the
main diagonal, and zeroes or ones on the main diagonal. The elements above the main
diagonal are unrestricted. The interpretation in Example 2.1 is triangular.

8 POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS

We make the obvious observation that each triangular interpretation fulfills the condi-
tions of Theorem 5.2, since the SCCs of the interpretation are singletons. All edges except
loops are transitional.

The interesting statement is:

Theorem 6.1. There is a rewriting system S with these properties:
• S has a compatible polynomially bounded matrix interpretation,
• S has no compatible triangular interpretation.

The proof is contained in the rest of this section. The main technical result is a mono-
tonicity property of triangular interpretations (Proposition 6.2).

We use signature Σ = {L,R, a,X} and take the rewriting system

S = {Raa→ aaR,RX → LX, aaL→ Laa,XL→ XRa}.
This is based on a system suggested by Jörg Endrullis for a related problem.

A typical S-derivation has R travelling right, and L travelling left: for any k ≥ 0,

XRa2kX →k Xa2kRX → Xa2kLX →k XLa2kX → XRa2k+1X →k Xa2kRaX. (6.1)

For termination, it is essential to count the length of blocks of a modulo 2. As the above
derivation shows, XRaevenX →∗ XRaoddX, but XRaoddX 6→∗ XRaevenX.

There is a polynomially bounded matrix interpretation that is compatible with S, see
Example 7.5 below.

We now prove that S has no compatible triangular interpretation of any dimension.
Since the signature is unary, we consider the transition matrices of the weighted automaton
corresponding to the interpretation, cf. Example 2.1 and Example 2.2. The relations ≥, >
for interpretations are expressed equivalently for matrices: we write A ≥ B if ∀i, j : Ai,j ≥
Bi,j , and A > B if A ≥ B and Atop,right > Btop,right.

Proposition 6.2. For any upper triangular nonnegative integer matrix A of dimension d,
the sequence (Ad, Ad+1, . . .) of powers of A is increasing: for all k ≥ d we have Ak ≤ Ak+1.

Proof. Take any k ≥ d and consider any pair of indices i, j with 1 ≤ i, j ≤ d. Then Aki,j
is the sum of weights of paths of length k from i to j. For each such path p we construct
a path p′ (of length k + 1) that contributes to Ak+1

i,j in such a way that the construction
p 7→ p′ is injective and (weakly) weight-increasing. Since |p| ≥ d, at least one vertex v is
contained twice in p. Since A is upper triangular, occurrences of v must be consecutive
in p. We construct p′ from p by adding an edge v → v for the leftmost repeated index v
of p. Since the weight of this new edge is ≥ 1, the weight of p′ is at least the weight of
p. By construction, the leftmost repeated vertex in p′ occurs at least thrice. For any two
non-equal paths p′, q′ constructed this way, we can delete the leftmost repetition and obtain
two non-equal paths p, q of length k that contribute to Aki,j .

Assume there is a triangular interpretation [·] of dimension d compatible with S. Take
k ≥ d/2. Then the interpretation must verify [XRa2kX] > [XRa2k+1X] by the derivation
6.1. On the other hand Proposition 6.2 implies [a2k] ≤ [a2k+1]. By monotonicity of mul-
tiplication, we obtain [XRa2kX] ≤ [XRa2k+1X], a contradiction. This proves Theorem
6.1.

POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS 9

7. Bounds for the Degree of the Growth Polynomial

The degree of ambiguity of a (classical) automaton can be determined by the following:

Theorem 7.1 ([Web91], Condition IDAd). A trim automaton A over Σ is polynomially
ambiguous of degree at least d if and only if there exist states p1, q1, . . . , pd, qd in A and
words u1, . . . , ud ∈ Σ+ and v1, . . . , vd−1 ∈ Σ∗ such that ∀1 ≤ i ≤ d : pi

ui→A pi
ui→A qi

ui→A qi
and ∀1 ≤ i < d : qi

vi→A pi+1.

GFED@ABCp1

u1

u1 // GFED@ABCq1

u1

v1 // GFED@ABCp2

u2

u2 // GFED@ABCq2

u2

v2 // . . .

vn−1
// GFED@ABCpn

un

un // GFED@ABCqn

un

It is possible to check this condition in O(|A|6) steps, and also by a corresponding
constraint system of this size. Still we found it to be infeasible submit this system to a
constraint solver.

The following definition fits with the constraint system that we will describe later:

Definition 7.2. An unambiguous decomposition of an automaton A with state set Q is a
system U = {U1, . . . , Uk} of non-empty and pairwise disjoint subsets Ui ⊆ Q such that

• each recurrent edge is contained in some Ui
• and for each i, the restriction of A to Ui is unambiguous.

The decomposition U defines a relation LU on Q that consists of all pairs (p, q) such that
p, q are in different components of U and there is a path from p to q.

The height of a decomposition is the height (length of a longest chain) of LU .

Remark 7.3. The SCC decomposition in Theorem 5.2, Item 3 is an unambiguous decom-
position. Its height is strictly smaller than the number of SCCs.

The connection to the degree of a polynomial growth bound is:

Proposition 7.4. If all recurring edges of a trim N-weighted automaton A have weight
one, and skel(A) admits an unambiguous decomposition of height g, then A is polynomially
bounded with degree g.

Proof. Assume that condition IDAd holds. Then denote by Pi (Qi, resp.) the component
of the decomposition that contains pi (qi, resp.) Note that these components exist since
both pi and qi are incident to recurring edges. We observe Pi 6= Qi. (Otherwise, the
common component would be ambiguous.) This implies LU (Pi, Qi). We also have Pi 6=
Pi+1. (Otherwise, LU (Pi, Qi) ∧ LU (Qi, Pi), in contradiction to the finite height of LU .)
This implies LU (Pi, Pi+1), and we infer d < g. This shows that the ambiguity of skel(A) is
bounded by a polynomial of degree g. By Theorem 4.5, the growth function of the weighted
automaton A is bounded by a polynomial of the same degree g.

We remark that the statement in Proposition 7.4 is not an equivalence, in the sense
that there may be decompositions U such that the height of LU is larger than the degree
of ambiguity. E.g., the SCC decomposition for Example 7.5.

10 POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS

Example 7.5. This interpretation is compatible with system S from Theorem 6.1:

[L] : x 7→


1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 6
0 0 0 0 1

 · x+


0
0
1
0
0

 , [X] : x 7→


1 0 6 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 · x+


0
6
0
0
1

 ,

[R] : x 7→


1 0 4 0 0
0 0 0 1 6
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

 · x+


1
0
0
0
1

 , [a] : x 7→


1 0 0 0 2
0 0 0 1 0
0 0 0 0 1
0 1 0 0 6
0 0 1 0 0

 · x+


0
0
1
0
0

 .

The translation from Section 3 turns this into a
weighted automaton with 5 states, shown right. The
SCCs of this automaton are {{1}, {2, 4}, {3, 5}}. Re-
current edges are the loops as well as the edges labelled
R and a inside the two SCCs with two elements. The
height of the SCC decomposition is two. Note that
the only edge from 1 to {2, 4} is labelled X, and this
label does not occur inside {2, 4}. This implies that
these two SCCs can be merged, resulting in the unam-
biguous decomposition {{1, 2, 4}, {3, 5}}. Its height is
one, implying a quadratic bound on the derivational
complexity of S. This bound is sharp since the rewrite
system does admit derivation of quadratic length, e.g.,
Rk(aa)k →k2

(aa)kRk.

1 Sigma:1

3

X:6,R:4

4

X:1

5

a:2

2

R:1,a:1

R:6L:1

R:1,a:1

L:1

L:6,a:6

L:1

As an application of Proposition 7.4, we show how to modify triangular interpretations
in order to improve (that is, reduce) the degree of their growth polynomial bound, in some
cases.

Proposition 7.6. For an upper triangular interpretation over alphabet Σ, let D be the set
of indices p such that there exists c ∈ Σ such that the entry at position p on the main
diagonal of the linear term of the interpretation of c is positive. Then the interpretation is
polynomially bounded with a degree of at most |D|.

Proof. Each p ∈ D constitutes a singleton SCC in the automaton. So all chains have length
≤ |D| − 1, and by Theorem 3.3 the result follows.

Example 7.7. (SRS/Zantema/z025) {ba → ab, a3 → ba2b, b4 → a} is solved by the inter-
pretation

[a] : x 7→


1 1 1 0
0 0 0 1
0 0 0 1
0 0 0 1

 · x+


0
1
2
3

 , [b] : x 7→


1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

 · x+


0
0
0
1


where D = {1, 4}, from which we infer maximum degree |D| = 2. This bound is sharp since
there are derivations of quadratic length because of the rule ba→ ab.

POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS 11

8. Certificates for Polynomial Bounds

In this part of the paper we show how the conditions of Theorem 5.2 and Proposition 7.4
can be deduced from existence of a “certificate”. We describe how to construct a (finite
domain) constraint system that specifies validity of the certificate. The subjects of the
constraints are relations on the set Q of states of the given N-weighted (word) automaton
A. These unknown relations are existentially quantified at the outer level.

We also build a constraint system that describes compatibility of an (unknown) linear
interpretation [·] with a given rewrite system R.

We combine both systems and use a constraint solver to find the interpretation [·] and
its polynomial growth certificate A at the same time.

The (by now) standard idea for constraint solving is to translate the constraint system
into a propositional logic formula. In the present paper, we discuss this “SAT encoding” of
the relational constraints only. For the encoding of compatibility constraints, we refer to
[End08].

8.1. Encoding of Relations

A relation on finite domains is directly modelled as a matrix of propositional variables.
In the constraint systems we will need the identity relation, on some domain. We

denote it by 1, and model it trivially with a matrix of propositional constants (True on the
diagonal).

For relations R,S, the implication R ⊆ S is modelled by point-wise propositional
implication between the corresponding matrix entries. Intersection R ∩ S is modelled by
point-wise “and”, and union R ∪ S by point-wise “or”.

We also need composition of relations R ◦ S, and this corresponds to Boolean matrix
multiplication; as well as the inverse R− of a relation, corresponding to matrix transposition.

Then, we want to describe the image and pre-image of a relation w.r.t. a set. By abuse
of notation, if we have a binary relation R ⊆ A×B and a unary relation (a set) A′ ⊆ A, we
write A′ ◦ R for {b | ∃a ∈ A′ : (a, b) ∈ R}, similarly for R ◦ B′ for B′ ⊆ B. This is realized
by multiplying the Boolean matrix R with the Boolean vector A′ (resp., B′).

The cost of most operations is proportional to the square of the matrix dimension,
except for composition (multiplication), where the cost is cubic. Here “cost” refers to the
formula size, or, equivalently, to the number of additional propositional variables that will
be created by conversion to an equisatisfiable conjunctive normal form.

8.2. Encoding SCCs

The automaton A defines for each a ∈ Σ an “edge” relation

µ>0(a) = {(p, q) : µ(a)(p, q) > 0},
and a “heavy edge” relation

µ>1(a) = {(p, q) : µ(a)(p, q) > 1}.
An (over-)approximation E ⊆ Q×Q of the reachability relation of the automaton A is

specified by the constraints⋃
{µ>0(a) | a ∈ Σ} ⊆ E ∧ E ◦ E ⊆ E

12 POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS

Correctness claim: For any solution E of the constraint system: If there is any path
p
w→A q of length |w| > 0 and weight > 0, then E(p, q) holds.

Note that we do require transitivity, but not reflexivity.
Also, we do not model reachability exactly. This would require to specify E as the

smallest relation with the given properties. This is not easily expressed in the given logic,
where we only have existential quantification. Over-approximation of reachability may even
be helpful, as explained in Section 7.

The relation S ⊆ Q×Q (over-)approximates “being in the same SCC”: S = E ∩ E−.
Correctness claim: for any solution (E,S) of the constraint system,
• if p→ q is a recurring edge in A, then S(p, q);

In particular ¬S(p, p) implies that p is a transitional node.
Condition (1) of Theorem 5.2 is modelled by the constraint

S ∩
⋃
{µ>1(a) | a ∈ Σ} = ∅.

Correctness claim: if the constraint system has a solution, then each recurring edge of A
has weight = 1.

The size of the constraint system is cubic in the number of states of A, since we need
composition of relations (once).

8.3. Encoding Unambiguity

As in [Web91], we use the criterion that an automaton A is unambiguous if the reachable
and productive states of the cross product automaton A×A are on its diagonal [Sak03].

We define a relation T ⊆ (Q × Q)2 that (over-)approximates the edge relation of the
product automaton, by

{((p, p′), (q, q′)) | ∃a ∈ Σ : µ>0(a)(p, q) ∧ µ>0(a)(p′, q′)} ⊆ T.
We use relations R,P ⊆ Q × Q with the intention that R(p, q) holds true if the state

(p, q) ∈ A×A is reachable, and P (p, q) holds true if the state (p, q) ∈ A×A is productive.
We specify:

• the diagonal states are reachable and productive: 1 ⊆ R ∧ 1 ⊆ P,
• each successor of a reachable state is reachable: (R ◦ T) ∩ S ⊆ R,

note that we restrict to transitions that stay inside the (approximated) SCCs.
• each predecessor of a productive state is productive: (T ◦ P) ∩ S ⊆ P,
• each state that is both reachable and productive, is on the diagonal: R ∩ P ⊆ 1

Correctness claim: if the constraint system has a solution, then S describes an unambiguous
decomposition U of A. Here, p and q are in the same component of U if S(p, q). The
height of LU is finite. — Proof: By construction, each recurrent edge is contained in some
component, and each component is unambiguous. A cycle of components is impossible since
S is transitive.

The size of the constraint system is Θ(d4) since we need to compute the (pre)image of
a relation on Q2.

Remark 8.1. If we collect all the constraints up to here, then we already have a method that
is more powerful in proving polynomial complexity bounds than triangular interpretations.
E.g., it finds a proof for the system in Theorem 6.1. In the following, we bound the degree
of the growth polynomial.

POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS 13

8.4. Unary Encoding of (Small) Numbers

A number n is given by a unary relation N that we view as a subset of the range. In
our case, N ⊆ {1, . . . , d} where d is the dimension of the interpretation = the number of
states of the automaton. Equivalently, N : {1, . . . , d} → Boolean. A value of k is encoded
by the assignment {1, . . . , k} 7→ True, {k + 1, . . . , d} 7→ False. That is, for any N encoding
a number we have the constraint ∀1 ≤ i < d : N(i)⇐ N(i+ 1).

For the given application, we did not investigate other encodings (e.g., binary) as the
range of numbers is small (it is the number of states of the automaton), and we do not need
arithmetical operations, only comparison: M > N is given by

∨
{M(i)∧¬N(i) | 1 ≤ i ≤ d}.

8.5. Encoding the Height of a Relation

The height of a relation L ⊆ Q×Q is the length of a longest L-chain. To express the
condition “the height of L is at most g”, we use a “height” function h : Q → {0, 1, . . . , g}
and the constraints

∀p, q : L(p, q)⇒ (h(p) > h(q)).
The range of h is implemented by unary numbers as discussed above.

The cost of this constraint is Θ(d2 · g), since we do d2 comparisons that cost Θ(g) each.
We apply this for g = the intended degree of polynomial growth, and the relation

L = {(p, q) | S(p, p) ∧ ¬S(p, q) ∧ E(p, q) ∧ S(q, q)}.
Correctness claim: if the constraint system has a solution, then the automaton A admits
an unambiguous decomposition of height ≤ g. — Proof: If p, q are recurrent nodes from
distinct S-components such that A contains a path from p to q, then L(p, q). Therefore,
each L-chain is a chain of S-components, and each of them is unambiguous.

Remark 8.2. In the general case, an unambiguous component may contain recurrent and
transitional edges, and the weight of transitional edges is irrelevant by Theorem 4.5. Since
we use the relation S (for efficiency of implementation), we discard the possibility that
unambiguous components contain transitional edges of weight > 1.

8.6. Encoding Improved Triangular Interpretations

We show that Proposition 7.6 can be implemented as a constraint system with little
effort. We use binary variables C1, . . . , Cd to encode membership in the set D:

∀1 ≤ p ≤ d : ∀c ∈ Σ : [c](p, p) > 0⇒ Cp

and we express that at most g of these variables are true, by a relation Z ⊆ Q× {1, . . . , g}
with the intention that Z(p, h) = “at most h of C1, . . . , Cp are true.” This is specified by

Z(p, h) = (Cp ∧ Z(p− 1, h− 1)) ∨ (¬Cp ∧ Z(p− 1, h)).

and obvious border cases. This constraint system is used in addition to the constraint sys-
tem that describes compatibility of a triangular interpretation with the rewriting system.
It is statically known that entries below the main diagonal are zero, so the multiplication
of such matrices can be implemented with less effort than for full matrices. So we ex-
pect the constraint solver to be able to handle somewhat larger matrix dimensions. The
interpretation in Example 7.7 was found this way.

14 POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS

9. Results

The method describe in this paper was implemented for the termination analyzer
Matchbox. Given a rewriting system R, the implementation produces constraint systems
for various values of d (matrix dimension) and g (degree of growth) and submits them to
solvers in parallel. As soon as a solution for some g is found, all other attempts for degrees
≥ g are terminated.

In the 2009 Termination Competition, Matchbox entered the category of Derivational
Complexity/Full rewriting. Of the 616 problems, it could prove polynomial derivational
complexity for 58 of them. The winner CaT got 98 answers. (The results of the third
participant TCT are currently not available.)

In 3 cases, Matchbox got a better degree bound than CaT, and in two cases, Matchbox
could prove polynomial complexity where CaT couldn’t. In 9 cases, CaT got a better degree
bound than Matchbox; and in 36 cases, CaT proved polynomial complexity where Matchbox
couldn’t.

The differences in performance are mainly due to the different methods that the pro-
grams apply: Matchbox uses the method of the present paper exclusively, while CaT uses a
combination of triangular interpretations, root labelling, relative termination, arctic matrix
interpretations and match-bounds.

10. Discussion

There are several open question related to polynomially bounded matrix interpretations.
We mention only a few.

Formal verification of certificates for polynomial derivational complexity is possible. As
a certificate, we can take the relations that are specified by the constraint system. Then it
is easy to formally verify their validity, since it only needs propositional logic. (If a SAT
solver can find it, then it is easy to check.)

Does there exist a rewriting system with polynomially bounded complexity that does
not admit a polynomially bounded matrix interpretation? It is easy to answer “yes”
for term rewriting: it was already noted in [End08] that the ground rewriting system
{f(a, b) → f(b, b), f(b, a) → f(a, a)} does not admit a matrix interpretation. Its deriva-
tional complexity obviously is linear. The question seems much harder for string rewriting,
even in the following restricted setting:

Do all match-bounded string rewriting systems have a polynomially (even linearly)
bounded matrix interpretation? Experience in the recent termination competition suggests
otherwise. Still, this may be due to vastly different search methods. Certificates for match-
boundedness can be found by completion [End06, Kor09], and quite often this gives large
automata quickly. On the other hand, matrix interpretations are usually found via con-
straint solving (via SAT, as described here), and this usually cannot handle much more
than dimension 5.

From a “practical” viewpoint, one would be interested in a constraint system that
describes a certificate for the exact degree of the growth polynomial with less than O(n6)
size—or in an altogether different method for the construction of automata that are compat-
ible with a given rewrite system, and polynomially bounded. As very concrete challenges,
one could try to find polynomially bounded matrix interpretations for two famous rewrite

POLYNOMIALLY BOUNDED MATRIX INTERPRETATIONS 15

systems z001= {a2b2 → b3a3} and z086= {a2 → bc, b2 → ac, c2 → ab}. In both cases,
matrix interpretations (of dimension 5) are known, but they grow exponentially.

What about using different weight domains for the interpretations? It is easy to gener-
alize the matrix interpretation method to rational (or real) numbers [Geb07], but it seems
harder to obtain complexity information from such interpretations. We would need to de-
cide whether a given Q-weighted automaton is polynomially bounded. The easy connections
from Section 4 do not hold, as a polynomially growing automaton could contain recurrent
edges of weight > 1 (e.g., if they are directly followed by edges of suitable weights < 1).

Acknowledgements. I appreciate the anonymous referees’ careful reading and detailed
discussion.

References

[Baa98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

[Béa08] Marie-Pierre Béal, Eugen Czeizler, Jarkko Kari, and Dominique Perrin. Unambiguous automata.
Mathematics in Computer Science, 1(4):625–638, 2008.

[Dro09] Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata. Springer,
2009.

[End06] Jörg Endrullis, Dieter Hofbauer, and Johannes Waldmann. Decomposing terminating rewriting
relations. In Workshop on Termination. 2006.

[End08] Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix interpretations for proving ter-
mination of term rewriting. J. Autom. Reasoning, 40(2-3):195–220, 2008.

[Geb07] Andreas Gebhardt, Dieter Hofbauer, and Johannes Waldmann. Matrix evolutions. In Dieter Hof-
bauer and Alexander Serebrenik (eds.), Proc. Workshop on Termination, Paris. 2007.

[Hof89] Dieter Hofbauer and Clemens Lautemann. Termination proofs and the length of derivations. In
Nachum Dershowitz (ed.), RTA, Lecture Notes in Computer Science, vol. 355, pp. 167–177. Springer,
1989.

[Hof06] Dieter Hofbauer and Johannes Waldmann. Termination of string rewriting with matrix interpreta-
tions. In Frank Pfenning (ed.), RTA, Lecture Notes in Computer Science, vol. 4098, pp. 328–342.
Springer, 2006.

[Kop09] Adam Koprowski and Johannes Waldmann. Max/plus tree automata for termination of term rewrit-
ing. Acta Cybern., 19(2):357–392, 2009.

[Kor09] Martin Korp and Aart Middeldorp. Match-bounds revisited. Inf. Comput., 207(11):1259–1283,
2009.

[Mos08] Georg Moser, Andreas Schnabl, and Johannes Waldmann. Complexity analysis of term rewriting
based on matrix and context dependent interpretations. In Ramesh Hariharan, Madhavan Mukund,
and V. Vinay (eds.), FSTTCS, LIPIcs, vol. 08004. Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2008.

[Sak03] Jacques Sakarovitch. Eléments de théorie des automates. Vuibert, Paris, 2003.
[Wal09] Johannes Waldmann. Automatic termination. In Ralf Treinen (ed.), RTA, Lecture Notes in Com-

puter Science, vol. 5595, pp. 1–16. Springer, 2009.
[Web91] Andreas Weber and Helmut Seidl. On the degree of ambiguity of finite automata. Theor. Comput.

Sci., 88(2):325–349, 1991.

If accepted for publication by RTA, this work will be licensed under the Creative Commons Attribution-NoDerivs
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

