
A Control Language (Proposal)
for Modular Termination

Provers
Jörg Endrullis, VU Amsterdam

and Johannes Waldmann, HTWK Leipzig

Color Workshop, Nancy 2007 – p.1/??



Current State
• externally (from a user’s viewpoint), termination

provers are monolithic

• although internally, they certainly consist of
components (e.g. Matchbox: simplex solver for
additive weights, matrix solver, RFC match
bound solver, loop finder).

• components cannot be re-used, this slows
down progress (much energy wasted for
re-inventing the wheel)

Color Workshop, Nancy 2007 – p.2/??



Goals
termination prover should allow

• direct access to, and control of, its components
• re-combination of its components

• combination with other provers’ components

Color Workshop, Nancy 2007 – p.3/??



A Control Language
• abstract data type

• leaves: elementary provers
• branches: combinators

• semantics

• concrete syntax

A termination prover then is an interpreter for this
language.
It could be a skeletal interpreter: it just handles the
combinators and calls external provers on the
leaves.

Color Workshop, Nancy 2007 – p.4/??



Semantics Domain—Now
what is the appropriate semantic domain?

• currently: TRS -> IO (Maybe Bool) where

IO a : computation with result of type a
data Maybe a = Nothing | Just a
data Bool = False | True

• “certified”: TRS -> IO (Maybe (Bool, Proof))

but this is not modular (such a prover is a
“dead-end”)

Color Workshop, Nancy 2007 – p.5/??



Modular Semantics Domain
type Prover =

TRS -> IO ( Maybe ( [ TRS ], Proof ) )

with specification
prover t -> Just ( [ t1, t2, .. tn ] , p )
<==> ( SN(t1) && .. && SN(tn) => SN(t) )

a successful “leaf” prover returns Just ( [], p )

this is naive, and cannot express:

• proofs of non-termination

• disjunction of sub-goals

• relative termination
Color Workshop, Nancy 2007 – p.6/??



Combinators for Provers
• (p ‘orelse‘ q) = \ s ->

• execute p s, if successful, then this is result
• else execute q s

• (p ‘andthen‘ q) = \ s ->

• execute p s, if this fails, then this is result
• if success Just ( [s1, s2, ..] , p ),

then combine results of q s1, q s2, ..

• other combinators can be built from these:
• first = foldr1 orelse

• sequential = foldr1 andthen
Color Workshop, Nancy 2007 – p.7/??



Additional atomic combinators
• parallel_or :: Prover->Prover->Prover

start both, when first result appears,
kill the other process, return result

• timed :: Seconds -> Prover -> Prover
run for at most the given time

may need more elaborate timer combinators
(e.g. “for half of the remaining time, do . . . ”)

Color Workshop, Nancy 2007 – p.8/??



Combinator–Example
Sequential

[ DP_Transform
, Repeatedly ( First

[ No_Strict_Rules, Simplex
, Timed 10
( Matrix { method = Max_Plus

, dimension = 2, bits = 3 } )
] ) ]

first = foldr1 orelse

sequential = foldr1 andthen
repeatedly x = x ‘andthen‘ repeatedly x

Color Workshop, Nancy 2007 – p.9/??



Todo
control language developers:

• define the appropriate semantics domain
• define concrete syntax for output language
• identify the atomic combinators (few as

possible) and their typical uses
• define concrete syntax for control language
• write skeletal interpreter (stand-alone)

prover authors:

• publish individual, conformant modules
• or allow to call individual modules within

“monolithic” prover Color Workshop, Nancy 2007 – p.10/??



Naive Concrete Syntax?
Parallel

[ Sequential

[ DP_Transform

, Repeatedly ( First

[ No_Strict_Rules, Simplex

, Matrix { method = Max_Plus , dimension = 2, bits

, Matrix { method = Max_Plus , dimension = 3, bits

, Matrix { method = Max_Plus , dimension = 4, bits

, Matrix { method = Max_Plus , dimension = 5, bits

] )

]

, Sequential

[ Reverse_Transform, DP_Transform

, Repeatedly ( First ...
Color Workshop, Nancy 2007 – p.11/??



Flexible Concrete Syntax
• abstraction (subprograms, with parameters =

lambda expressions)
• repetition (loops = list comprehensions)
• types: Prover, Integer (loop counter), (Time?)

matrices dim0 s t = first $ do

dim <- dim0 : [ 1 .. 5 ]

method <- [ top_half_strict maxplus, top_strict plustimes ]

return $ timed ( 2 * dim^2 ) $ method dim s t

dp dim s t = sequential

[ dp_transform , top dim s t, no_strict_rules ]

dpd dim s t = ( dp dim s t ) ‘por‘

( reverse_transform ‘andthen‘ dp dim s t )Color Workshop, Nancy 2007 – p.12/??



Embedded DSL?
• strategy expression = Haskell expression

(strategy language = embedded domain
specific language)

• Ideally, yes, but don’t want to deploy a complete
Haskell system. Perhaps can use GHC(i) API
(ghc as a library).

• “he who does not know (Haskell), is doomed to
re-invent it—poorly.”

• e.g. allow some implicit abbreviations,
homegrown macro processing or calling cpp

Color Workshop, Nancy 2007 – p.13/??



Elaboration: Statement type
(notes added after discussion at workshop)
“termination problem” consists of these
components:

• signature
• four rule sets: all combinations of top/non-top,

strict/non-strict
• Graph: directed graph on (top) rules
• strategy, e.g. “innermost w.r.t. rule set . . . ”

(Aprove calls this Q)
• boolean minimality flag

semantics is termination of the implied rewrite rela-
tion.

Color Workshop, Nancy 2007 – p.14/??



Elaboration: Statement Semantics
• semantics is termination of the implied rewrite

relation (“there are no infinite chains”)

• If a graph is present, extended by “. . . and the
graph is a correct (i.e. over-) approximation of
the possible connections of top rules (in infinite
derivations)”

• missing components should have sensible
defaults.

• not all possible combinations of components
have sensible semantics (these are forbidden).

Color Workshop, Nancy 2007 – p.15/??



Elaboration: Transformers
(notes added after discussion at workshop)
most general output type of a transformer is a
boolean combination of statements O1, . . . (of the
above form), and information of its relation to input
(⇒,⇐, ⇐⇒ ).
e.g. I ⇐ O1 ∨ O2

Remark by Rene (Aprove): this is not enough.
A transformer might produce the information
(I ⇐⇒ O1) ∧ (I ⇐⇒ O2)
which cannot be expressed by a formula with one
isolated I and one arrow.

Color Workshop, Nancy 2007 – p.16/??


	Current State
	Goals
	A Control Language
	Semantics Domain---Now
	Modular Semantics Domain
	Combinators for Provers
	Additional atomic combinators
	Combinator--Example
	Todo
	Naive Concrete Syntax?
	Flexible Concrete Syntax
	Embedded DSL?
	Elaboration: Statement type
	Elaboration: Statement Semantics
	Elaboration: Transformers

