Weighted Tree Automata as Certificates for Termination of Term Rewriting

Adam Koprowski, TU Eindhoven Johannes Waldmann, HTWK Leipzig

Introduction: Rewriting

term rewriting system R is set of rules, rule is pair of terms (with variables), left hand side describes pattern, right hand side describes replacement. system R defines

- top rewrite relation $\overset{\text{top}}{\rightarrow}_R$
- rewrite relation \rightarrow_R (context closure of $\stackrel{\text{top}}{\rightarrow}_R$)
- model of (parallel, nondeterministic) computation
- one important question: is $\overset{\text{top}}{\rightarrow}_R, \rightarrow_R$ well-founded?

Introduction: Termination

undecidable in general (Turing completeness) various semi-algorithms. basic ideas:

- syntactic methods: find well-founded ordering > on $\mathrm{Term}(\Sigma)$ with $s \to_R t \Rightarrow s > t$ Knuth-Bendix-Ordering (1970), (lexicographic, multiset) path ordering (Dershowitz 1982)
- interpretation $[\cdot]$ from term algebra $\mathrm{Term}(\Sigma)$ into some well-founded Σ -algebra (A, >) such that $s \to_R t \Rightarrow [s] > [t]$. polynomial interpretations (into \mathbb{N}) (Manna, Ness 1970; Lankford 1975)

Introduction: Automation

find termination proofs automatically

- find precedence/ordering
- find (polynomial) interpretation
- use transformations: e.g. dependency pairs transformation (Arts, Giesl 2000)

termination of $\rightarrow_R \iff$ termination of $\stackrel{\mathrm{top}}{\rightarrow}_{R'}$

typically, produces step-wise proofs:

- splitting (into independent sub-problems)
- removal of rules

Introduction: Certification

- there are several (rather advanced) termination "provers",
- regular Termination Competition since 2003. is the output of such a program really a proof?
- yes: if it is accepted by a proof checker (Coq, Isabelle)
- uses library of termination proof methods (Color: Blanqui, Koprowski 2006 . . .).

Interpretations (I)

- interpretation of function symbol $f \in \Sigma_k$ by a function $[f]: A^k \to A$ can be extended to terms with variables: if $t \in \text{Term}(\Sigma, V)$, then $[t]: (V \to A) \to A$. for rewriting system R, ordering > on A, define
 - [·] is compatible with R if $\forall (l \to r) \in R$, $\sigma : \operatorname{Var}(l) \cup \operatorname{Var}(r) \to A : [l] \sigma > [r] \sigma$
 - [·] is monotonic (closed w.r.t. contexts) if $\forall f \in \Sigma_k, v_1, \ldots, v_i' > v_i, \ldots v_k \in A$: $[f](\ldots, v_i', \ldots) > [f](\ldots, v_i, \ldots)$

Interpretations (II)

- If (A, >) is well-founded and $[\cdot]$ into (A, >) is compatible with R, then $\overset{\mathrm{top}}{\to}_R$ is terminating.
- If (A, >) is well-founded and $[\cdot]$ into (A, >) is compatible with R and monotonic, then \rightarrow_R is terminating.
- Now: define $[\cdot]$ by a weighted tree automaton, take A=(Q o W).

Weighted Tree Automata (WTA)

WTA A consists of ranked signature Σ , weight semi-ring $(W,+,\cdot,0,1)$, set of states Q,

weighted transitions: for $f \in \Sigma_k : \mu_f : Q^{k+1} \to W$, defines an interpretation $\mathrm{Term}(\Sigma) \to (Q \to W)$ by

$$\begin{aligned}
[f(t_1,\ldots,t_k)] &= q \mapsto \\
\sum_{q_1,\ldots,q_k\in Q} \mu_f(q_1,\ldots,q_k,q) \cdot [t_1](q_1) \cdot \ldots \cdot [t_k](q_k)
\end{aligned}$$

final weight vector $\gamma:Q\to W$, defines $A(t)=\sum_{q\in Q}\gamma(q)\cdot [t](q)$.

classical instance: $W={\sf Boolean}$ semi-ring.

Separated (Linear?) WTA

in the general model, a WTA interprets a function symbol $f \in \Sigma_k$ by a function

$$[f]: (Q \to W)^k \to (Q \to W)$$

that is multi-linear (a tensor).

simplification (restriction): functions of shape

$$[f](v_1,\ldots,v_k)=(M_0+)M_1\cdot v_1+\ldots+M_kv_k$$
 where M_0 vector, M_1,\ldots,M_k square matrices.

Note: (M_0+) by de-homogenization (assume last vector component is =1)

Note: closed under composition (substitution).

WTA over $\mathbb N$

- (the "matrix method", Endrullis, Hofbauer, Waldmann, Zantema 06)
- domain $A=(Q o\mathbb{N})$, ordering

$$u > v \iff u_1 > v_1 \land u_2 \geq v_2 \land \ldots \land u_n \geq v_n$$
.

- $[\cdot]$ compatible with rule $l \to r$ is implied by
- $[l]_0>[r]_0$ and $\forall i>0:[l]_i\geq [r]_i$.
- $[\cdot]$ monotonic is implied by $\forall i > 0 : (M_i)_{1,1} > 0$.

$$[f](v_1,\ldots,v_k) = M_0 + M_1 \cdot v_1 + \ldots + M_k \cdot v_k$$

Arctic WTA

$$\mathbb{A} = (-\infty \cup \mathbb{N}, \max, +, -\infty, 0)$$

domain $\mathbb{N} \cdot \mathbb{A} \cdot \ldots \cdot \mathbb{A}$
ordering: component-wise extension of $>_0$
where $x >_0 y \iff x > y \lor x = y = -\infty$.

Note:
$$a >_0 b \land c >_0 d \Rightarrow \max(a, c) >_0 \max(b, d)$$
 and $a >_0 b \land a \in \mathbb{N} \Rightarrow a \neq b$.

[·] compatible with rule $l \to r$ is implied by $\forall i \geq 0 : [l]_i >_0 [r]_i$.

$$[f](v_1,\ldots,v_k) = M_0 + M_1 \cdot v_1 + \ldots + M_k v_k$$

Arctic WTA (II)

- [f] must not leave the domain
- $\mathbb{N} \cdot \mathbb{A} \cdot \ldots \cdot \mathbb{A}$
 - e.g. require that $\forall f: \exists i: ([f]_i)_{1,1} \in \mathbb{N}$.
 - in fact only $[l]\sigma$ must be in the domain: require that $([l]_0)_1 \in \mathbb{N}$.

$$[f](v_1,\ldots,v_k) = M_0 + M_1 \cdot v_1 + \ldots + M_k v_k$$

Arctic Monotonicity?

$$[f](v_1,\ldots,v_k) = M_0 + M_1 \cdot v_1 + \ldots + M_k v_k$$

- if k > 1, then no such [f] is monotonic. $(\Rightarrow \text{ no "deep" termination proofs, "only" top termination proofs.)$
- for k=1 (string rewriting), [f] is monotonic if $M_0=-\infty^Q$ and $(M_1)_{1,1}\in\mathbb{N}$.
- this is the Matchbox 2007 method.

Arctic WTA ... below zero

$$\mathbb{A}_{\pm} = (-\infty \cup \mathbb{Z}, \max, +, -\infty, 0)$$

domain $\mathbb{A}_{\pm}^Q \cap \{v \mid v_1 \geq k\}$ for some $k > -\infty$
ordering and compatibility as before.

Keeping the domain:

- Does not work: $\forall f: \exists i: ([f]_i)_{1,1} \in \mathbb{Z}$.
- but this works: require that $([l]_0)_1 \ge k$.
- in fact, require only $\forall (l \to r) \in R : ([l]_0)_1 > -\infty$
- and then take $k = \min\{([l]_o)_1 \mid (l \rightarrow r) \in R\}$.

$$[f](v_1,\ldots,v_k) = M_0 + M_1 \cdot v_1 + \ldots + M_k v_k$$

Results

- implementation transforms to SAT problem (other approaches: complete, randomly, evolutionary)
- N matrices for string and term rewriting: 2006
- A matrices for string rewriting (Matchbox): won the 2007 Termination competition
- A and \mathbb{A}_{\pm} matrices for term rewriting: will take part in 2008 (Matchbox/TPA)
- formal proofs (for Coq) are being worked on, extending the existing proofs for N matrices in the Color/Rainbow framework

WTA properties

previous conditions (on [f]) are in fact crude approximations to limitedness problems in WTA:

- input: WTA A over (W, >), regular language L
- question: $\inf\{A(t) \mid t \in L\} > 0$
- for W= Boolean: decidable $(L\setminus L(A)\stackrel{?}{=}\emptyset)$, for $W=\mathbb{A}$: decidable (use Boolean WTA that recognizes the support of L(A)) but decision algorithm not easy for a constraint solver.

Open Questions

automata theory:

- decidability of \mathbb{A}_{\pm} limitedness
- compare languages of linear WTA to those of full (multilinear) WTA
- ...e.g. for the Boolean case

rewriting:

- compare proving power of \mathbb{N} , \mathbb{A} , \mathbb{A}_{\pm} WTA
- ... w.r.t. number of states

implementation:

ullet find WTA compatible with given R quickly

WTA limitedness

our problem:

- input: WTA A over \mathbb{A}_{\pm}
- question: $-\infty < \inf\{A(t) \mid t \in \text{Term}(\Sigma)\}$
- cf. limitedness problem for tropical (min,plus) automata (Hashiguchi 1982, Leung 1991, Kirsten 200?) but
 - strings \rightarrow trees
 - domain $\mathbb{N} \cup \infty \to \operatorname{domain} \mathbb{Z} \cup \infty$
- (Comment by D. Kirsten: it follows from a result by Krob that the above problem is undecidable) 2008 p.18/18