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Example: Arctic Semiring Constraints
arctic semiring: domain A = {−∞} ∪ N,
x ⊕ y = max(x , y), x ⊗ y = x + y .
example constraint system:
(a11 ≥ 0) ∧ (b11 ≥ 0) ∧

∧
i ∈ {1, 2}
j ∈ {1, 2}


(cij = (ai1 ⊗ b1j)⊕ (ai2 ⊗ b2j))
∧ (((ai1 ⊗ a1j)⊕ (ai2 ⊗ a2j) > (ci1 ⊗ a1j)⊕ (ci2 ⊗ a2j))
∨ (((ai1 ⊗ a1j)⊕ (ai2 ⊗ a2j) = −∞)
∧((ci1 ⊗ a1j)⊕ (ci2 ⊗ a2j) = −∞)))

∧ (bij ≥ bi1 ⊗ b1j ⊕ bi2 ⊗ b2j)

imagine this with 100 . . . 1000 unknowns
hard for DPLL(T) because ⊕ introduces disjunctions,
−∞ introduces case distinctions (in ⊕ and ⊗)
Our solution: unary bit-blasting.
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Where do these constraints occur?
the framework is exotic semirings, examples:

I arctic {−∞} ∪ Z,max,+
I tropical N ∪ {+∞},min,+
I fuzzy {−∞} ∪ N ∪ {+∞},min,max

applications:
I formal languages (star height problem) (Imre

Simon 1988)
I idempotent analysis
I disjunctive invariants in static analysis
I automated analysis of termination of programs

(modelled as rewriting systems)
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Arctic Matrices for Termination
R =

{
a a→ a b a

}
and S =

{
b→ b b

}
to show relative termination of R w.r.t. S
(no R∪ S-derivation with infinitely many R steps)

interpret symbols by matrices a 7→ A,b 7→ B
with A1,1 ≥ 0 ∧ B1,1 ≥ 0 ∧ (A2 >0 ABA) ∧ (B ≥ B2).
where (x >0 y) is x > y ∨ (x = −∞ = y)

matrix dimension 2 gives constraints from intro slide
where cij is contents of C = AB,

one solution is A =

(
0 0
1 1

)
,B =

(
0 −∞
0 −∞

)
.
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Topics of this talk

I definition and motivation of exotic semiring
constraints

I solving by translation (QF_LIA, QF_IDL)
I solving by unary bitblasting:

I naturals, integers, exotic numbers
I implementation, empirical evaluation

I the “killer” example
I comparison of different approaches
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Translation to QF_LIA, QF_IDL
Represent exotic number as pair of “(minus/plus)
infinity” (a boolean) and “contents” (a number).

arctic multiplication (plus): (m, c) =
⊗

k(mk , ck) iff
(m =

∨
k mk) ∧ (¬m→ (c =

∑
k ck)).

arctic addition (max): (m, c) =
⊕

k(mk , ck) iff
(m =

∧
k mk) ∧ (¬m→

∧
k(¬mk → c ≥ ck))

∧(¬m→
∨

k(¬mk ∧ c = ck)).

For fuzzy semiring constraints, operations are min
and max (and no +), so encoding goes to QF_IDL.

We submitted a bunch of these to SMT-COMP’12.
arctic/tropical in QF_LIA demonstration, QF_IDL?
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Unary Bit-Blasting: Order Encoding

translation QF_LIA to SAT (sound, incomplete):
I restrict to finite domain {0,1, . . . ,B}
I number x ⇒ monotone list of booleans
[x1, . . . , xB] where xi ↔ (x ≥ i),
e.g., 3 = [1,1,1,0,0,0,0,0]

I arithmetical operations⇒ boolean functions
unary encoding is highly redundant,
but allows for propagations,
and thus SAT solvers perform well
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Order-Encoded Operations
should prefer conjunctive encodings.
Example: comparison of k -bit unary numbers,
e.g., a = 〈1,1,1,0〉,b = 〈1,1,0,0〉.

I this is easy: a ≥ b ⇐⇒
∧

k{ak ← bk}
I by negation: a > b ⇐⇒

∨
k{ak ∧ ¬bk}

I this is equivalent (by monotonicity)
and we think it is better, since it is a conjunction:
a > b ⇐⇒ a1 ∧ ¬bk ∧

∧
k{ak+1 ← bk}

no hard evidence.
also depends on whether we want to assert a > b,
or have it as a subformula, e.g., assert ((a > b)∨ . . . )
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Order Encoded Arithmetics
I max/min by point-wise ∨/∧ (linear formula size).
I addition: let a = 〈a1, . . . ,ak〉,b = 〈b1, . . . ,bk ′〉.

Then a + b = c where c = 〈c1, . . . , ck+k ′〉 with

∧
0 < i ≤ k ,
0 < j ≤ k ′

 (ai → ci) ∧ (¬ai → ¬ck ′+i) ∧
(bj → cj) ∧ (¬bj → ¬ck+j) ∧
(ai ∧ bj → ci+j) ∧ (¬ai ∧ ¬bj → ¬ci+j−1)


quadratic size, but no extra variables.

addition via sorting networks (less clauses, more
vars) does not pay off (propagation is delayed?)
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Extensions

I integers: shift the encoding.
transform x ∈ {−k + 1, . . . , k}
to x + k and encode as natural.
keep min and max, modify + (shift back)

I exotic numbers: use one extra bit for −∞,+∞
(either one for arctic and tropical, both for fuzzy)
keep monotonicity,⇒ keep min and max

I Overflows: are not allowed (otherwise unsound)
Either increase bit width as needed (in addition),
or keep bit width and assert “¬ overflow”.
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to x + k and encode as natural.
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Improvements

I low level: boolean equipropagation [MCLS11]
(Bee)
(detect instances of x ↔ y or x ↔ ¬y and
propagate)

I high level: algebraic simplification [EWZ08]
(Matchbox)
(extraction of common factors in matrix
products)
before emitting the QF_LIA system, or the CNF.
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The “Killer” Example

Termination benchmark SRS/Gebhardt/19
{0000→ 1011,1001→ 0010} (open since 2006)

is terminating since tropical matrix constraint system

0#03 ≥ 1#012 ∧ 1#021 ≥ 0#010
∧ 04 ≥ 1012 ∧ 1021 ≥ 0210
∧ (04 >0 1012 ∨ 1021 >0 0210).

is solvable for 8× 8, minisat needs one hour.
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Experimental Results
using solvers satchmo-smt, Bee, Z3
on exotic constraints from termination problems

I 3 bit binary vs. 7 bit unary (equal range)
outcome: unary is better

I Z3 (with DPLL(Simplex)?) vs. unary (with
iterative deepening = increasing bit width)
outcome: unary is better

I unary: straightforward (satchmo-smt) vs.
preprocessed (Bee)
outcome: not conclusive.
(minisat preprocessor will run anyway)
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Why and When does this Work?
Exotic termination constraint systems
contain >,≥,max,min,+, 0 (and no number > 0).
So it seems quite likely that solvability equals
solvability in small numbers.

Why does unary seem to be better than binary?
Better propagation?

Why does DPLL(T) not work (fast enough)?
Lots of disjunctions and booleans.

When does unary bitblasting not work? With “large”
constants. (As most QF_LIA benchmarks have.)
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