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Abstract
We report on recent and ongoing work on the Matchbox termination prover:

a constraint compiler that transforms a Boolean-valued Haskell function into a Boolean sat-
isfiability problem (SAT),
a constraint solver for real and arctic matrix constraints that is using evolutionary optimiza-
tion, and is running on massively parallel (graphics) hardware.
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1 Introduction

The program Matchbox [11] originally proved termination of string rewriting, using the
method of match bounds [6]. The domain was extended to term rewriting, by adding proof
methods of dependency pairs [1], matrix interpretations over the integers [4] and over arctic
numbers [9].

These methods are typical instances of the following scheme: to automatically find a
proof of termination, one solves constraint satisfaction problems. E.g., the precedence of
function symbols, or the coefficients of polynomials and matrices, are constrained by the
condition that the resulting path order, polynomial order, or matrix order, respectively, is
compatible with a given rewriting system.

The constraint system could be solved by
domain-specific methods (e.g., Matchbox computes a certificate for match-boundedness
by completion of automata),
generic search (exhaustively, randomly, or directed by some fitness function),
transformation to another constraint domain (e. g., Matchbox transforms integer and
arctic polynomial inequalities to a Boolean satisfiability problem, and solves it with
Minisat [3]).

In the present paper, we report on recent and ongoing work to
extract a general framework for constraint programming by automatic transformation to
SAT,
and (independently) add a domain-specific solver for real and arctic matrix constraints
that is using evolutionary optimization, and is running on massively parallel (graphics)
hardware.
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2 Recent Developments in the Matchbox Termination Prover

2 A Constraint Compiler

The idea behind constraint programming is to separate specification (encoded as constraint
system) from implementation (the constraint solver). The obvious choice for the specific-
ation language is mathematical logic, equivalently, a pure (i.e. side-effect free) functional
programming language like Haskell. A constraint system c can be seen as a function with
type c : U → Bool, where the solution is an object s ∈ U such that c(s) is True.

There are clever solvers for the case that U ′ = Bool∗, and c′ is given by a formula in
propositional logic. But typically, the application domain U is different. The translation
from U to U ′ can be done manually by the programmer, or automatically, by some tool.
The satchmo library (http://hackage.haskell.org/package/satchmo) used in Matchbox
is an example for the “manual” approach. It is an embedded (in Haskell) domain specific
language for the generation of SAT constraints. Several termination researchers built and
published similar libraries for other host languages (Ocaml, Java). These interweave the
generation of the boolean formula with the declaration of the constraint system in the host
language. E.g., satchmo generates the formula as a side effect represented by a suitable State
monad. Actually these are different processes and should be separated from each other.

Therefore Alexander Bau is building a constraint compiler that inputs source code of a
Haskell function c : U → Bool, as explained above, and produces a satchmo program. The
domain U may use structured data types like tuples and lists, in addition to primitive types
like booleans and integers. c may also depend on run-time parameters that are not known at
compile time.

A prototypical use case is the search for a precedence that defines a lexicographical
path order (LPO) that is compatible with a term rewriting system (TRS). In this case the
constraint system consists of a Haskell implementation of LPO : TRS→ Precedence→ Bool.
LPO applied to a TRS R and a precedence p returns true, iff lpo(p) is compatible with R.
The first parameter (R) of LPO is known at run-time while the second (p) is not.
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The constraint system is given as a program (a set of declarations) in a subset of Haskell.
The constraint compiler performs a type-directed transformation, where the type system is
an extension of the Damas-Milner type system [2] [10]. We additionally annotate each type
constructor with a flag that indicates whether its value is known (as a parameter given at
run-time) or unknown (and therefore has to be determined by the constraint solver).

We plan to extend the type system further, to take into account resource bounds [7].
E.g., we want to be statically certain that the size of the generated SAT constraint system is
polynomially bounded in the size of the (known) input parameters.

http://hackage.haskell.org/package/satchmo


Bau, Kalbitz, Voigtländer, Waldmann 3

3 Massively Parallel Constraint Solving

A constraint satisfaction problem can be converted into an optimization problem that is
solved by evolutionary algorithms. For the domain of matrix interpretations, this approach
was used by Dieter Hofbauer’s termination prover MultumNonMulta (2006, 2007), see also
[5]. We return to it now, since it allows for massive parallelisation.

In the context of numerical constraint solving by randomized, directed search, parallel
processing is applicable because

basic operations (on numbers) can be executed fast
domain specific operations (matrix multiplications) can be sped up by parallelism (multi-
plication of n dimensional square matrices, using n2 cores and n time)
evolutionary search strategies can be sped up again, by treating several individuals in
parallel (e.g., computing their fitness values)

General Purpose Graphical Processing Units (GPGPUs) provide massively parallel
processing at affordable prices. Tobias Kalbitz and Maria Voigtländer are implementing
matrix constraint solvers for CUDA capable graphics cards. CUDA (Compute Unified Device
Architecture) [8] is a parallel programming model for NVIDIA’s GPGPUs.

The following approach is used to find a strictly monotone matrix interpretation of
dimension d that is compatible with a string rewriting system R over alphabet Σ (weakly
compatible with each rule, and strictly compatible with at least one rule):

A population consists of several individuals, each individual is a matrix interpretation,
that is, a mapping [·] : Σ → Nd×d, where for each a ∈ Σ, the first column of [a] is
(1, 0, . . . , 0)T , and the last row of [a] is (0, . . . , 0, 1). This condition ensures monotonicity.
The fitness of an interpretation [·] is

∑
{max(0, [r]p,q− [l]p,q)2 | (l, r) ∈ R, 1 ≤ {p, q} ≤ d},

plus some very large penalty in case that ¬∃(l, r) ∈ R : [l]1,d > [r]1,d. Lower fitness values
are better, and value zero indicates that compatibility holds.
An individual with fitness > 0 is changed by a large mutation: we randomly pick some
(l, r) ∈ R, 1 ≤ {p, q} ≤ d such that [l]p,q < [r]p,q, and we choose randomly a sequence
of indices p = p0, p1, . . . , pn = q with n = |l|, and then increase each [ai]pi−1,pi

by one,
where l = a1 . . . an. This ensures that [l]p,q increases.
Next, this individual undergoes a series of small mutations where for any a ∈ Σ, 1 ≤
i, j ≤ d, the entry at [a]i,j is modified. We try sereval small mutations, until we find one
that decreases fitness, and then repeat. The total number of small mutations is bounded.
The resulting individual is placed back into the population, removing another individual
of larger fitness.

I Example 1. With 1000 individuals, and 100 small steps after each large step, we find a
compatible 5-dimensional interpretation for a2b2 → b3a3 (Problem z001) with < 30.000 large
steps with probability > 50%. Of course, the total runtime is not bounded, as the evolution
may go into a dead-end. So it is better to re-start than to wait.

Applying this idea to rational and arctic numbers, we meet the following challenges:
Real numbers are approximated by rational (“floating point” values), thus results of

comparisons may be wrong. The solution is to introduce a “grid” for rounding input values,
e.g. use only integer multiples of 1/2, or 1/10, say.

A fine grid implies a smooth objective function, and this may help evolutionary algorithms.
On the other hand, a coarse grid reduces the search space, and may increase the chance that
we find a solution by luck.

Note that we do not need a grid for arctic numbers, since we can use arctic integers.
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On typical CUDA cards, a large number of compute cores is available (e.g., 512). They
can only be used efficiently if the data that they process is stored in fast (thread-(block-)local)
memory. The amount of such memory is severely limited (e.g., 16 kByte total, resulting in
300 byte per core)

CUDA cards are programmed in (a dialect of) C. This allows fine-grained control, but
is highly impractical for large-scale programming. Therefore, we are isolating the low-level
details in a C library, and provide it with an interface to Haskell, where we implement global
flow of control. Still it is important that data stays on the card’s memory, since transport to
and from the host computer’s memory is slow.

4 Future plans

We stress that the above is a report on ongoing work.
We plan to have an implementation ready for the termination competition in 2012. The

code will be open-sourced.
Since the hardware of the competition platform does not include a GPGPU, we will run

Matchbox/CUDA remotely.
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