Automated Exercises for Constraint Programming

Johannes Waldmann (HTWK Leipzig)

```
http://www.imn.htwk-leipzig.de/
   ~waldmann/talk/14/wlp/auto/
```

September 16, 2014

Automated Exercises - Why?

- lecture without homework exercises is useless
- homework that is not discussed/graded is useless
- no money to pay teaching assistants for grading
- not enough time to discuss everything in class
- automated and real-time grading helps student to understand the basics
- and frees class time for more interesting discussion

(Declarative) Constr. Programming

- ► constraint program (w.r.t. structure S) is formula F in predicate logic
- Constraint solver answers the questionF ∈ Theory(S)
- ▶ in particular, if F is of shape $\exists x_1, \ldots, x_n : M$, by giving a satisfying assignment

aspects for teaching:

- (syntax and semantics of predicate logic)
 - model application problems by constraints
 - explain how solvers work

Kroening, Strichman: *Decision Procedures* (Springer, 2008)

Exercise for Propositional SAT

(to show the general idea in a very straigthforward case)

- exercise
 - ▶ instance: satisfiable formula F (in CNF)
 - solution: a satisfying assignment
- generator
 - will produce random satisfiable F
 - with given number of variables and clauses

doing the exercise, student will

- (learn semantics of propositional formulas)
- appreciate the "hard work" that the SAT solvers do

UNSAT proofs by resolution

exercise:

- ▶ instance: unsatisfiable F in CNF
- solution: a resolution proof of the empty clause

actually,

- proof is DAG, represented as list of nodes
- root nodes are clauses from F
- each internal node is resolution step

A general model for automated exercises

doing the exercise, student has to make choices general description (analogy)

- exercise: non-deterministic algorithm
- student: acts as oracle
- automated grader: acts as verifier

how does this fit the teaching objetives?

- if the subject is NP, then very well (obviously)
- if the subject is a deterministic algorithm (as used in constraint solvers), then what?

Exercises for Decision Methods

- present the (invariants of the) algorithm via inference rules, as in (e.g.) Apt: Principles of Constraint Programming
- most often these rules are non-deterministic in a natural way this allows to apply our exercise model
- concrete algorithm corresponds to specific strategy in rule applications
- strategy is ignored in verifying the solutions
- but can be enforced implicitly (using wrong strategy takes too many steps)

Exercise for solving FD constraints

via tree search, state is given by stack of domain assignments (variable \mapsto subset of domain)

- ▶ Decide: for variable, pick value, push others
- Solved, Backtrack, Inconsistent

```
\frac{x \in D}{x = a \mid x \in D \setminus \{a\}} \text{ for } a \in D
```

```
== Decide x 1 ==>
Stack [listToFM [(x, [ 1   ]), (y, [0,3])]
   ,listToFM [(x, [0, 2,3]), (v, [0,3])] ]
```

Stack [listToFM [(x, [0,1,2,3]), (y, [0,3])]

Ex. for FD: Arc Consistency

```
( P , mkSet
  [ [0, 0, 0], [0, 1, 1], [0, 2, 2]
  , [ 0, 3, 3 ], [ 1, 0, 1 ], [ 1, 1, 2 ]
  , [ 1, 2, 3 ], [ 2, 0, 2 ], [ 2, 1, 3 ]
  , [ 3, 0, 3 ] ] )
current : Stack [ listToFM [ ( x, [ 0 ] )
             , (y, [0, 1, 2, 3])]]
step : Arc_Consistency_Deduction
        \{ atoms = [ P (x, x, y) ] \}
       , variable = y, restrict_to = [ 1 ] }
these elements cannot be excluded
  from the domain of the variable, because the
 given assignment is a model for the atoms:
    [ (0, listToFM [ (x, 0), (y, 0) ] ) ]
```

FD constraints (Exercise design) if constraint is unsat, then ...

- student has to produce a full search tree
- could be done by Decide/Backtrack only, but is impractical
- enforces the usage of arc consistency deductions
- if constraint is sat, then ...
- student could guess a solution
 - and then just enter the corresponding Decide-steps (and avoid arc consistency considerations)
 - Decide must always uses lowest value

Exercise for DPLL with CDCL

Davis, Putnam, Logeman, Loveland, solves SAT

plain DPLL: just like FD tree search, unit propagation \approx 1-consistency.

Conflict Driven Clause Learning, Backjumping in case of conflict:

- learn a new clause R (the conflict "reason", must be inferrable from clauses used to obtain current assignment)
- ► jump back (and use *R* for unit propagation) student choices: what to learn, where to jump

DPLL Exercise Generator

- naive approach:
 - since DPLL is complete method, it can be applied to any formula
 - drawback: solutions (proof traces) vary greatly in length
- fair approach:
 - generate formula
 - find (shortest) proof trace (implement backtracking solver)
 - choose formula where proof trace length is reasonable
 - drawback: source code contains solver, students may exploit this

SAT and DPLL modulo Theory

Syntax: F in CNF where clauses may contain

- Boolean literals and
- ► theory literals, e.g., $\neg(2x+3>4y)$

state of search given by partial assignment (= set of literals) σ

two kinds of conflicts:

- Boolean conflict (F contains clause where all literals are false in σ)
- Theory conflict (theory literals from σ are inconsistent)

example:

- ► Theory of linear inequalities (over Q)
- Solver: Fourier-Motzkin

Conclusion, Discussion

- exercises for constraint programming
- automated generation of instances, grading of solutions
- ▶ use exercises (anonymously) at
 https:
 //autotool.imn.htwk-leipzig.de/
 cgi-bin/Trial.cgi?lecture=199
- make our own autotool installation
 (run it in a VM, https://github.com/
 marcellussiegburg/autobuildtool)