Automated Performance Measurements

Johannes Waldmann, HTWK Leipzig

August 16, 2016

Abstract

We reify the API of a library, so we can represent nested calls as terms. Using a
smallcheck-like enumeration of terms and contexts, we find problematic API usages that
take a lot of time. As an example, we investigate the standard pretty library.

1 Example and Concepts

The pretty library [3] provides an abstract data type Doc for two-dimensional documents, with
a concrete implementation that is hidden behind an API (application programming interface).
For instance, there are functions

e (constructor) char :: Char -> Doc
e (combinators) cat, sep :: [Doc] -> Doc
e (destructor) render :: Doc -> String

We reify this API and obtain a data type that models nested API function calls. Terms can
be evaluated by replacing each constructor with the corresponding function.

data Term = Char Char | Op Op [Term] ; data Op = Cat | Sep ; eval :: Term -> Doc

The cost of a term t :: Term can be determined experimentally by measuring the time for
its (complete) evaluation, e.g., by forcing length (render (eval t)).

Measuring time puts us in I0. The actual number of evaluation steps should be a pure
function of the term, but actual time for execution may be influenced by garbage collection,
which may happen “out of the blue”. So we should average over several samples.

We are interested in how the cost behaves as a function of term size, in the worst case. For
that, we can enumerate all terms by size, using smallcheck [2]. We derive a generic Serial
instance, obtained from deriving Generics for Term.

Ignoring for the moment that this will enumerate by depth, not by size, we still find that
this approach is infeasible: small terms will be evaluated quickly, and there are just too many
of them, so we never get to see anything interesting.

We use iterated contexts. A context is a term with a hole. A context can be applied to a
term (the hole is substituted by the argument)

data Context = Hole | Cop Op [Term] Context [Term] ; apply :: Context -> Term -> Term

Iterated application creates a sequence of terms

s :: (Context, Term) -> [Term] ; s (c, t) = iterate (apply c) t

where the size is a linear function of the index.

We derive a Serial instance for Context, and enumerate pairs p :: (Context,Term). For
a fixed n :: Int, e.g.,, n = 100, and each p, we measure cost (s p !! n), and investigate
closer those that have high cost.

Each p gives a one-parametric family of test cases, and we can, for instance, plot cost as a
function of size (that is, index). By eyeballing that graph, or more detailed statistical analysis,
we can form an opinion on the asymptotic class of the function (linear, quadratic, ...). This
can be compared to our expectation, and to the actual implementation.

2 Results

With my implementation [4] I found that (after import Text.Pretty.HughesPJ) this expression

length $ render
$ iterate (\ hole -> sep [text "1", cat [hole], text "1"]) (text "1") !! 1000

takes 10 seconds to evaluate, where the output string has length 4001 only.

I suspect that pretty behaves quadratically, see https://github.com/haskell/pretty/
issues/32#issuecomment-223312412.

I also measured performance for wl-pprint [1]. Incredibly, this little program

import Text.PrettyPrint.Leijen
main = putDoc $ iterate (\ hole -> hsep [hole, sep [1]) (text "1") !! 100

takes 3 minutes (on a standard desktop computer). The same happens when sep [] is replaced
by group empty. If we just write empty there, then all is fine.

Also, wl-pprint follows a different specification than pretty and produces different layouts.
When we use wl-pprint to approximate pretty, we should wrap each combinator application
in an align.

3 Discussion

My implementation works for the special case that there is only one result type Doc and all
combinators have identical type [Doc] -> Doc.

The method should be extended for APIs that use more types. The reified data type (and
interpreter) should be obtained in an automated way, from the names and types of the functions
in the APIL. The context type should be obtained in an automated way from the underlying term
type.

But even without any extensions, the method is useful: it highlights a little-known feature
(namely, quadratic cost) of a standard library, and a serious bug in another.

References

[1] Daan Leijen. wl-pprint. https://hackage.haskell.org/package/wl-pprint-1.2, 2015.

[2] Colin Runciman and Roman Cheplyaka. smallcheck. https://hackage.haskell.org/
package/smallcheck) 2016.

[3] David Terei. pretty. https://hackage.haskell.org/package/pretty-1.1.3.4, 2016.

[4] Johannes Waldmann. pretty-test. https://github.com/jwaldmann/pretty-test, 2016.

https://github.com/haskell/pretty/issues/32#issuecomment-223312412
https://github.com/haskell/pretty/issues/32#issuecomment-223312412
https://hackage.haskell.org/package/wl-pprint-1.2
https://hackage.haskell.org/package/smallcheck
https://hackage.haskell.org/package/smallcheck
https://hackage.haskell.org/package/pretty-1.1.3.4
https://github.com/jwaldmann/pretty-test

	Example and Concepts
	Results
	Discussion

