
Two Concrete Challenges
in Complexity Analysis
of Actual Haskell Code

Johannes Waldmann, HTWK Leipzig

Logic, Compexity, and Automation
Obergurgl, 2016

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 1 / 17



Why do Research in Complexity?

I better theorems
I more papers
I faster code!
I more realistically: warn about slow code

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 2 / 17



Why do Research in Complexity?

I better theorems
I more papers
I faster code!
I more realistically: warn about slow code

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 2 / 17



Why do Research in Complexity?

I better theorems
I more papers
I faster code!
I more realistically: warn about slow code

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 2 / 17



Why do Research in Complexity?

I better theorems
I more papers
I faster code!
I more realistically: warn about slow code

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 2 / 17



This Talk: Two Concrete Challenges

I text formatting (pretty-printing)
innermost derivational complexity
accidentally quadratic?

I binary operations on balanced search trees:
sharp bound that depends on both input sizes (instead of
just their sum)
innermost runtime complexity

I this is actual Haskell code from popular libraries (e.g., GHC
uses them), performance is crucial

I code is being developed actively,
guided by papers, benchmarks, . . .
and gut feelings — can we do better?

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 3 / 17



This Talk: Two Concrete Challenges

I text formatting (pretty-printing)
innermost derivational complexity
accidentally quadratic?

I binary operations on balanced search trees:
sharp bound that depends on both input sizes (instead of
just their sum)
innermost runtime complexity

I this is actual Haskell code from popular libraries (e.g., GHC
uses them), performance is crucial

I code is being developed actively,
guided by papers, benchmarks, . . .
and gut feelings — can we do better?

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 3 / 17



This Talk: Two Concrete Challenges

I text formatting (pretty-printing)
innermost derivational complexity
accidentally quadratic?

I binary operations on balanced search trees:
sharp bound that depends on both input sizes (instead of
just their sum)
innermost runtime complexity

I this is actual Haskell code from popular libraries (e.g., GHC
uses them), performance is crucial

I code is being developed actively,
guided by papers, benchmarks, . . .
and gut feelings — can we do better?

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 3 / 17



This Talk: Two Concrete Challenges

I text formatting (pretty-printing)
innermost derivational complexity
accidentally quadratic?

I binary operations on balanced search trees:
sharp bound that depends on both input sizes (instead of
just their sum)
innermost runtime complexity

I this is actual Haskell code from popular libraries (e.g., GHC
uses them), performance is crucial

I code is being developed actively,
guided by papers, benchmarks, . . .
and gut feelings — can we do better?

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 3 / 17



Text Formatting (Pretty Printing)
I abstract data type D (Document)

D represents set of 2-dimensional layouts
I construction from

I individual letters (or short strings)
I composition: atop, beside, choice

text "A" <+> vcat [text "B", text "C"] ==> A B
C

I rendering: compute one layout that (best) matches some
criteria (e.g., page width)

I typical papers/implementations:
I John Hughes 1995, The Design of a Pretty Printing Library,

Simon Peyton Jones 1997, pretty
I Derek Oppen 1980, Phil Wadler 1998, A Prettier Printer, Dan

Leijen, wl-pprint, Edward Kmett, wl-pprint-extras

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 4 / 17



Expected Cost and Cost Model
I practical consideration:

I (pretty) printing must never take noticeable time
I application: printing termination problems and termination

proofs — these can be huge
I formal model:

I cf. Wadler Section 3, page 11: “reasonble to expect . . . time
O(s), where s is the size of the document”

I “document” = term of nested API calls
I innermost derivational complexity should be linear

I assumptions:
I string catenation in (amortized) constant time
I nested indentation may produce quadratic amount of

whitespace — ignore (compress)

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 5 / 17



Actual Cost of Formatting
I occasional observations (for a long time)

pretty printer appears slow, or even hangs
I automated benchmarking:
https://github.com/jwaldmann/pretty-test
enumeration of families tk = Ck [t0]
suggest that cost is super-linear

I import Text.PrettyPrint.HughesPJ -- pretty
length $ render
$ iterate (\d -> sep [text "l",cat [d],text "l"])

(text "l") !! 400

I import Text.PrettyPrint.Free -- wl-pprint-extras
putDoc $ iterate (\d -> hsep [d, sep []])

(text "l") !! 40

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 6 / 17

https://github.com/jwaldmann/pretty-test


What the Implementation Looks Like

I it is really a first-order functional program
I higher order functions for notational convenience only,

the compiler inlines them (it should)
I uses algebraic data types (trees) to represent documents
I also uses numbers, e.g., to decide whether something fits

on a line, or needs break

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 7 / 17



Actual Code: Does This Look Risky?
(from wl-pprint-1.2/Text/PrettyPrint/Leijen.hs)

best n k (Cons i d ds) = case d of
Union x y -> nicest n k (best n k (Cons i x ds))

(best n k (Cons i y ds))
nicest n k x y | fits width x = x

| otherwise = y
where width = min (w - k) (r - k + n)

fits w x | w < 0 = False
fits w SEmpty = True
fits w (SChar c x) = fits (w - 1) x
fits w (SText l s x) = fits (w - l) x
fits w (SLine i x) = True

Neil Mitchell (on similar code in pretty):
“I’d be surprised if this was not quadratic.”
Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 8 / 17



Accidentally Quadratic

I claim: in most practical cases, you want linear cost, and
anything above that is a bug

I nice collection of such bugs:
http://accidentallyquadratic.tumblr.com/
(Nelson Elhage)
from various libraries, languages, paradigms

I suggestion:
develop methods and tools to prove and disprove linear
upper bounds

I start with: counting symbols, weights, exotic matrix
interpretations (incl. matchbounds)

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 9 / 17

http://accidentallyquadratic.tumblr.com/


Balanced Search Trees

I standard implementation of sets (and maps)
I order: ensures that query can be answered by walking one

path (so work is bounded by height)
I balance (AVL, Red-Black, 2/3, weight, . . . ):

ensures that height is logarithmic in size
I typical proof obligations:

I correctness⇐ maintain order
I complexity⇐ maintain balance

I do we really need this? — yes, if . . .
I we don’t have a good hash function,
I or we need persistence,
I or we need bulk operations (see later this talk)

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 10 / 17



Cost Model and Analysis

I model: innermost runtime complexity
(cost of evaluating one operator application)

I challenge: bound complexity (automatically)
without referring to balance

I suggestion: instead of “cost is logarithmic in size”, prove
“cost is linear in height”.

I an analyzer would look at “just the code”,
and not at the proof (of balance).
but really, the code should contain the proof
(the language should be dependently typed)

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 11 / 17



Binary Operations

I intersection, union, difference, . . .
intersectionWith :: Ord k

=> (a -> b -> c)
-> Map k a -> Map k b -> Map k c

I example application:
(general) multiplication of sparse matrices
(specific) my recent re-implemetation of matchbound
construction

I weighted relation: pair of nested maps
(A→ (B →W ),B → (A→W ))
for R ◦ S, need range(R) ∩ domain(S)

I cannot do this efficiently with hashtables (?)

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 12 / 17



Cost: Claims, Hopes and Proofs

containers:Data.Map.Strict.union
I API doc (version 0.5.6.3) says: O(m + n)

(Adams 1992)
I but really? What if m� n?

naive method (m lookups) gives m · log n.
I Adams: “considerably faster when one tree is small or trees

have dense regions that do not overlap” (but no formal
claim)

I (version 0.5.8.1, August 31) O(m · log(n/m + 1))
(Blelloch et al., 2016)
cf. no. of comparisons for merging: log2

(n+m
m

)
Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 13 / 17



Cost: Claims, Hopes and Proofs

containers:Data.Map.Strict.union
I API doc (version 0.5.6.3) says: O(m + n)

(Adams 1992)
I but really? What if m� n?

naive method (m lookups) gives m · log n.
I Adams: “considerably faster when one tree is small or trees

have dense regions that do not overlap” (but no formal
claim)

I (version 0.5.8.1, August 31) O(m · log(n/m + 1))
(Blelloch et al., 2016)
cf. no. of comparisons for merging: log2

(n+m
m

)
Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 13 / 17



Cost: Claims, Hopes and Proofs

containers:Data.Map.Strict.union
I API doc (version 0.5.6.3) says: O(m + n)

(Adams 1992)
I but really? What if m� n?

naive method (m lookups) gives m · log n.
I Adams: “considerably faster when one tree is small or trees

have dense regions that do not overlap” (but no formal
claim)

I (version 0.5.8.1, August 31) O(m · log(n/m + 1))
(Blelloch et al., 2016)
cf. no. of comparisons for merging: log2

(n+m
m

)
Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 13 / 17



Cost: Claims, Hopes and Proofs

containers:Data.Map.Strict.union
I API doc (version 0.5.6.3) says: O(m + n)

(Adams 1992)
I but really? What if m� n?

naive method (m lookups) gives m · log n.
I Adams: “considerably faster when one tree is small or trees

have dense regions that do not overlap” (but no formal
claim)

I (version 0.5.8.1, August 31) O(m · log(n/m + 1))
(Blelloch et al., 2016)
cf. no. of comparisons for merging: log2

(n+m
m

)
Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 13 / 17



Formal Analysis of Cost

I again, independent of correctness,
I express bound as function of two input sizes and heights

(i.e., four parameters in total)
I the bound we want is product of linear functions,

height(t1) · size(t2)
I this is actually the “total work” bound,

Blelloch et al. also compute the “span” (longest data
dependency) as height(t1) · height(t2).

I suggestion: methods to bound cost for multi-ary functions
by product of linear unary functions (of size and height)

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 14 / 17



Actual Code
I uses algebraic data types (binary trees) — good
I and numbers (for balancing) — bad?
balance k x l r
| sizeL + sizeR <= 1 = Bin sizeX k x l r
| sizeR > delta*sizeL = rotateL k x l r
| sizeL > delta*sizeR = rotateR k x l r
| otherwise = Bin sizeX k x l r
where sizeL = size l ; sizeR = size r ; sizeX = sizeL + sizeR + 1

rotateR k x l@(Bin _ _ _ ly ry) r
| size ry < ratio*size ly = singleR k x l r
| otherwise = doubleR k x l r

singleL k1 x1 t1 (Bin _ k2 x2 t2 t3)
= bin k2 x2 (bin k1 x1 t1 t2) t3

I well, not bad, but complicated?

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 15 / 17



But It’s Already Proven In The Papers

I papers can be wrong (Adams 92 was)
Note that according to the Adam’s paper:
- [delta] should be larger than 4.646 with a [ratio] of 2.
- [delta] should be larger than 3.745 with a [ratio] of 1.534.
But the Adam’s paper is erroneous:
- It can be proved that for delta=2 and delta>=5
there does not exist any ratio that would work.

- Delta=4.5 and ratio=2 does not work.

I even when they’re right — code is not paper
-- The balance function is equivalent to the following:
[what you saw on previous slide]
-- It is only written in such a way that
-- every node is pattern-matched only once.

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 16 / 17



But It’s Already Proven In The Papers

I papers can be wrong (Adams 92 was)
Note that according to the Adam’s paper:
- [delta] should be larger than 4.646 with a [ratio] of 2.
- [delta] should be larger than 3.745 with a [ratio] of 1.534.
But the Adam’s paper is erroneous:
- It can be proved that for delta=2 and delta>=5
there does not exist any ratio that would work.

- Delta=4.5 and ratio=2 does not work.

I even when they’re right — code is not paper
-- The balance function is equivalent to the following:
[what you saw on previous slide]
-- It is only written in such a way that
-- every node is pattern-matched only once.

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 16 / 17



Conclusion

I height (in addition to size)
I linear functions
I products of linear functions
I real world examples

Johannes Waldmann, HTWK Leipzig Two Concrete Challenges. . . LCA’16 17 / 17


