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Tree Automata and Term Rewriting

From strings to trees (in general)

» weighted automaton on strings:
» final weight: f4€ 1 x Q — S,
» transition: t4 maps letter to linear function (matrix),
> initial weight: ip € Qx 1 — S.
» weighted automaton on trees:
» final weight (at top of tree): fac 1 x Q — S,
» transition: {4 maps k-ary function symbol g
to k-ary multilinear function (tensor)

[gl(va,..., %) = ZCH ..... i@V ®
» initial weights (at leaves): for each 0-ary symbol, Q x 1 — S
» semantics (automaton maps term ¢ into S)

» based on runs, where run maps position to state
» algebraically: fa  [t]

- @ Vi
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Tree Automata and Term Rewriting

From strings to trees (simplified)

» general form of tensor (applied to vectors v;)
T(Vi, oo Vi) =D Ciy i Vaiy - -+ Vi

X 7 2X1Y1 + Xo)3 + 5X3)3
Ex. T( Yo |) = | X1¥2 + 3Xays + 2X3 1
X3 Y3 4x21

not substitution closed (T(x, x) is quadratic)
» restrictions: x3 = y3 = 1, no mixed monomials

Xq » Xo+5
Ex. T([ x|, |y2])=|3x+2)
1 1 1

» write as affine functions (T, vector; Ty, ...
T(V17.4.4VK)= To+ T1 Vit oo+ Tk'Vk

ren—(3)+ (3 3 (2 )
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Tree Automata and Term Rewriting

Matrix Interpretations for Term Rewriting

» use affine functions (T, vector; Ty,... matrices)
T(V17‘.‘,Vk): To+ T vi+.. .+ Tk v
» interpret ground term by vector,
term with k variables as k-ary affine function
» weight of term t = sum of weights of paths in ¢
» monotonicity: V1 < i< k: (Tx)11 > 1.
» order: S > T iff (So)1 > (To)
and V0 < i< k:S; > T; (component-wise)
» local compatibility: V(/,r) € R: [] > [r]
0 X4 10
01)Y

» Exercise: [f](x,y) = ( >+ 2) 1
z) = f(x,f(y, 2))}

is compatible with {f(f(x, y),
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Tree Automata and Term Rewriting

Remark on previous example
e (0)- (3 ) 3 9)

» can evaluate by CAS (maxima)
f(x,y) := matrix([0],[1])

+ matrix([1,1]1,[0,1]) . x
+ matrix([1,0],[0,1]1) . vy ;
X : matrix([x ] [x2]) ;
y @ matrix([yl]l, [y2]) ;
z @ matrix([zl],[z2]) ;
expand ( [f(f(x,y),z), £(x,f(y,2z))] ) ;
N 2‘
» Exercise: in [f] = b))

what is the meaning of #, t, (if there is one)?
» Exercise: does the growth match the derivational
complexity (asymptotically)?
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Tree Automata and Term Rewriting

Remark on Derivational Complexity

» law of associativity, (AVL) right rotation

A= {f(f(x,y),z) — f(x,f(y,2))}
» let L[] = f(a,-); R[] = (-, a), then R[L[y]] —a L[R[y]]
» so Acan simulate RL — LR,
thus dc, is at least quadratic

» growth of [f](x,y) = (?) + (:) 1) X+ (2) ?) y
is O(n) - growth{ (2) 1) , (g) ?)} € O(n?)
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Arctic Weights

Automata with Arctic Weights

» the arctic semiring A = ({—oo} UN, —oco, max, 0, +)
this is the opposite of the (min, +) semiring,
named tropical in honour of Imre Simon,
who lived in Sao Paulo, Brasil

» essential difference to N: monotonicity of ®
NN: X1 <X=X1+y<X+y
NA X <X A XTOY<Xdy
XI< X ANY1 <Yo= XDV <X2D )2
» aclosed and monotone set of matrices (M, >)
M= {A | A]J 75 —OC}
A>B — VI'JIA;J®B,‘.J‘

where ac b <= (a>b)V(a=—oco=0>b)
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Arctic Weights

Arctic Automata: Examples

> M:{A‘A1117é—00}
A>B «— VI'.,_/':A,',/'(?B,'J‘
where as b < (a>b)V(a=—occ=D>b)
» Exercise: check that this is compatible with {aa — aba}:

ta- (9 9). o= (2 %)

compute and compare t(aa), t(aba)
» compatible with {ab — ba}?
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Arctic Weights

Arctic Automata: Growth

» compatible with R = {ab — ba}?
impossible, since dcg is quadratic, but. . .
» Thm: V arctic automaton A: growth(A) is linear
» Proof: arctic multiplication = standard addition,
M ®...®mg| < k-max;||mj
» comments:
» restricts the power of this termination proof method
» gives a stronger statement about dc
» research problem:
are there well-founded semirings S with quadratic
(or other polynomial) growth (of matrices)?
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Arctic Weights

Arctic Termination for Terms

» arctic affine functions
Tvi,.... i) =Tod Thovied..a Th® v
are not (strictly) monotonic
» arctic automata “do not work” (for termination) for (> 2)-ary
symbols.
they work for unary symbols with Ty = zero vector
» The dependency pairs (DP) transformation
reduces a termination problem SN(R)
to a relative top termination problem SN(DP(R)p/R)
» for that, arctic affine functions are fine
» top rewriting = no top context = strict monotonicity not
needed
» relative termination = weak monotonicity is enough
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Arctic Weights

Arctic Top Termination (Example)

» 2086 R = {a&® — bc, b? — ac, c® — ab}
» DP(R) = {Aa— Bc,Aa— C,Bb— Ac,Bb — C,Cc —
Ab, Cc — B}

» remove some rules by counting symbols,
remaining: DP(R)’ = {Aa — Bc, Bb — Ac}

. [a]:(g ?)7[b1:(? ;),[c]:(g ;>
[Al=[B]= (0 —oc)

» [Bb]=(3 2)oAc]= (0 1)
other rules weakly decreasing

» this works very well (e.g., in termination competitions),
also with refinements of DP
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Arctic Weights

Arctic Top Termination — Remark

» how to find coefficients for arctic matrices?

» constraint system in SMT logic QF_LIA
(linear integer arithmetic = boolean combination of
inequalities between linear functions of unknowns)

» Corollary: it is decidable whether finite R has compatible
arctic automaton with given size (number of states).

» challenge problem: is it also without the size?

perhaps with a bound on the weights?
» in practice, often use QF_BV (bitvectors),

since we have a /ot of boolean unknowns

(one for each @, which is max)

this is not complete (because we fix a bit width in advance)
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Fuzzy Weights (Match Bounds)

Fuzzy Weights (Match Bounded Rewriting)

» the fuzzy semiring
F = ({—00, +00} UN, 400, min, —oo, max)
» for any finite M, the set M* (all products) is finite
= no IF automaton computes a measure function for
termination of rewriting
» but we can transform to a different semiring
(only used in paper proofs, actual computation is in F)
» historically, this was the first instance (2003)
of the matrix termination methods

» the actual motivation was preservation of regularity of
languages under rewriting
(with termination only a side effect)
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Fuzzy Weights (Match Bounds)

Fuzzy Weights (Match Bounded Rewriting)

2 1 4o
+0o 400 400

1 0 +oo

2 4o +o00
+o0o 400 0
+o0o0 400 +0oo

Exercise: compute [aa], [abg]
» embed into semiring M(IF)
» domain: TU Multisets over N
» addition: mins, w.r.t. multiset extension > of > on N
» multiplication: multiset union

» Owm() is monotone, Sr implies Sy
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Fuzzy Weights (Match Bounds)

Decomposition of Match-Bounded Rewriting
» instead of [/] ©F [r] consider:
match.(R) == all (/,r) € (Z x {0,1,...,¢c})*?
with max height/ > max heightr A (base /,baser) € R
Ex. (axa1, a1bpap) € matchy{(aa, aba)}
» split rules, using formal left and right inverses:

C:{az%a1b0aoa_1>74.4},E:{§1>a1 ‘)Eﬂ...}
match.(R)* = (C U E)* N original alphabet
» re-order derivations
match.(R)* = (C* o E*) N original alphabet
» match.(R)* preserves REG
(C terminates (!), C* is substitution, E is inverse monadic)
» R match-bounded (Def: ...) = R* preserves REG
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Fuzzy Weights (Match Bounds)

Constructing Compatible Automata

» that is, w.r.t. local compatibility A(p,/,q) > A(p,r.q)
comes in two flavours: if semiring zero is . ..
» high: uncovered redex = add reduct path
» low: uncovered reduct = add redex path
for weights from F, completion actually works:
» compute closure w.r.t. (CU E)*
» if Ris match-bounded, then this stops
does R have compatible F-weighted automaton with. ..
» number of states < S, no bound on weights: decidable
» weights < W, no bound on states: decidable
» challenge problem: neither bound: decidable?
challenge: give a completion algorithm for N, A
Example (Dieter Hofbauer): &2b> — b%a® over N
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