Check Your (Students’) Proofs
— With Holes

Dennis Renz Sibylle Schwarz Johannes Waldmann
HTWK Leipzig, Germany

WFLP 2020

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020

1/1

Programming by Proving (Exercise)

data N =72 | S N —— unary (Peano) numbers
doubleN :: N -> N

doubleN Z = Z ; doubleN (S x) = S (S (doubleN x))
data B = Zero | Even B | O0dd B —-— Dbinary

value :: B —> N ; value Zero = 27

value (Even x) = doubleN (value x)

value (0dd x) = S (doubleN (value x))

—— implement succB and prove lemma:

succB :: B —> B ; succB Zero = _
succB (Even x) = _ ; succB (0dd x) = _
Lemma succ
forall b :: B : value (succB b) .=. S (value b)

Proof by induction on b :: B RN QED

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 2/1

Programming by Proving (partial Solution)
derive program (function succB) from specification (lemma
succ) by writing the proof (replacing the dots “. . .”) and filling
holes (underscores) in the program to make the proof work.

S (value (0dd x))

S (S (doubleN (value x)))
. doubleN (S (value x))

(by def value)
(by def doubleN)

(by IH) .=. doubleN (value (succB x))
(by def value) .=. value (Even (succB x))
(by def succB) .=. value (succB (0dd x))

E. W. Dijkstra: put the horse (proof) before the cart (program)!

This exercise is an example for the Cyp proof language (Durner
and Noschinski 2013; Traytel 2019)

with our extensions: holes in programs and proofs;
also: types, integration of Cyp proof checker in auto-grader.

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 3/1

Cyp (Check Your Proofs)

programming language: subset of Haskell
» algebraic data types (data)
» function definitions with pattern matching and recursion
» no local names (no let, where, case,)
» higher-order types, but no type classes
proof language:
» by rewriting (equational reasoning)
» by extensionality (for equality of functions)
» by case analysis (on algebraic data types)
» by induction (on (recursive) algebraic data types)

original Cyp: separation of theory (program, axioms, goals)
(given by instructor) from proofs (to be written by student)

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020

4/1

What Cyp can do, and cannot do
can do:

» associativity of Peano-plus, List-append
(induction on first argument)

» map £ . map g .=. map (f . qg)
(extensionality, induction)
what about merge :: Ord a => [a] -> [a] —> [a]?
» no type classes, but can pass dictionary as extra argument
(a —> a —> Bool) —> [a] —> [a] —> [a]

» cannot do induction on pair of arguments!
perhaps insert:: (a—>a->Bool) -> a -> [a] —-> [a]?
» needs “if (<) is transitive, then ...”, but have no implication!

still, equational reasoning and structural induction is plenty
enough for our students (Bachelor Comp. Sci. 4th semester)

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 5/1

Holes

» hole = missing sub-tree of program or proof
» motivation for introducing holes:
» original Cyp: each goal (in the theory) acts as a
proof-hole, there were no program-holes.
Leads to “prove this program correct” exercises (that’'s
cart before horse!)
» we can now give partial programs and partial proofs
(e.g., one branch of a case analysis)
» Cyp handles submissions with holes gracefully:
» assume hole can be filled,
» continue checking other parts of proof
> reject in the end.

» for step-wise development, cf. typed holes in Agda, GHC

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020

6/1

Types

| 2

>

>

original Cyp is untyped: if theory (given by instructor) is
type-correct, proof (by student) cannot go wrong type-wise?

Cyp accepted monomorphic proof for polymorphic lemma

data U = U; Lemma eek : x .=. y;

Proof by case analysis on x :: U ... QED
False (by eek) .=. True

added Hindley-Milner typing for programs, lemmas, proofs,

Lemma eek : forall x :: a, y :: a: x .=. Yy

Proof by case analysis on x :: U —-- rejected

using Typing Haskell in Haskell (Jones, 2000)

is needed for program-holes anyway
(otherwise, student could write nonsense programs)

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 7/1

Summary/What else is in the paper
» we introduced holes in programs and in proofs, added a
type checker, and integrated with Leipzig autotool
» we used Cyp/autotool for automated homework in a lecture
recently (50 students, 4th semester Comp. Sci. Bachelor)
» examples: plain rewriting (no induction); Peano arithmetics;
lists: length, append, map, fold; trees: mirror, inorder, size
» source code (GPL), documentation, examples: https:
//gitlab.imn.htwk-leipzig.de/waldmann/cyp
Appendix: remarks on implementation (methods, libraries used)
» ASTs: source location information in ASTs,
and hiding them via GHC’s pattern synonyms
» pretty-printing: avoid, print parts of original input instead
» matching for ASTs: short source code via generic traversals
(Scrap Your Boilerplate, LaAmmel and Peyton Jones 2003)

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 8/1

https://gitlab.imn.htwk-leipzig.de/waldmann/cyp
https://gitlab.imn.htwk-leipzig.de/waldmann/cyp

Discussion: Semantics of Cyp Programs

goal: provable property of Cyp program P should be observable
when running P as a Haskell program

» note the similarity (it could be automated)
Lemma succ

forall b::B : wvalue(succB b) .=. S(value b)
leancheck $ \ (b :: B) —>
value (succB b) == (value Db)

pattern matching: Haskell: top-down, Cyp: non-deterministically
> after f z = False ; £ Z = True, Cyp accepts
False (by def f) .=. £ Z (by def f) .=. True
possible future work:
» require naming of rule (£.1, £.2) in rewrite proof step
» enforce disjointness of patterns (reject this definition of £)

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 9/1

Discussion: overlapping clauses

This (and next slide) was asked in reviews.
Thanks for careful reading, will be helpful in paper’s next version,
didn’t manage to update for pre-proceedings, but discuss now:

» Q: GHC's -Woverlapping-patterns does not detect
f (Sx)y=_ £x (Sy)=_
A: Indeed! To keep the paper correct, that option should be
renamed (0 -Wredundant-patterns :-) See https:
//gitlab.haskell.org/ghc/ghc/—-/issues/18643

» Q:in Curry (Hanus et al., 1995), overlapping clauses define
a non-deterministic function, and Cyp’s statements about
convertibility of expressions by rewriting are correct.

A: Yes. So, “Cyp for Curry” next? Do it! (...and cite us.)

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 10/1

https://gitlab.haskell.org/ghc/ghc/-/issues/18643
https://gitlab.haskell.org/ghc/ghc/-/issues/18643

Discussion: termination of Cyp programs

» Q:...suggest to annotate programs with a function to
project arguments to a simple well founded domain (N, N)
» A: we would then need a similar mechanism in proofs by
induction? Otherwise, cannot prove properties of such
functions?
our suggestion (in the paper): require the student to mark
the (structurally) decreasing argument
reason (not stated in the paper): that argument likely is the
induction variable.

Renz, Schwarz, Waldmann Check Your (Students’) Proofs — With Holes WFLP 2020 11/1

