Approximating Relative Match-Bounds

Alfons Geser¹, Dieter Hofbauer², Johannes Waldmann¹

¹HTWK Leipzig (Germany), ²ASW Saarland (Germany)

18th Workshop on Termination Haifa, Israel, August 11–12, 2022

Motivation

The 595 problems from TPDB/SRS_STANDARD/ICFP_2010 are

- large: avg. 70 rules of size 2340 (non-ICFP: 3.3 of size 21.5)
- time consuming: VBS CPU time at termCOMP'21 avg. 90", median 28" (non-ICFP: avg. 51", median 6")
- hard: VBS at termCOMP'21 solves 86 % (non-ICFP: 96 %)

2 / 14

Motivation

The 595 problems from TPDB/SRS_STANDARD/ICFP_2010 are

- large: avg. 70 rules of size 2340 (non-ICFP: 3.3 of size 21.5)
- time consuming: VBS CPU time at termCOMP'21 avg. 90", median 28" (non-ICFP: avg. 51", median 6")
- hard: VBS at termCOMP'21 solves 86 % (non-ICFP: 96 %)

termCOMP'21 versus '22

	Matchbox	MnM	VBS
termCOMP'21	510	417	514
termCOMP'22	595	594	595

2/1

Overview

Methods from this talk

(timeout 10")

		rb	rel. rb	mb	rel. mb
	solved	370	568	588	590
	%	62.2	95.5	98.8	99.2
	avg. CPU time	0.29"	0.88"	1.37"	0.93"

rb: right barren / **mb**: approx. RFC-match-bounded combined with weights + reversal; iterated for rel.

3 / 14

Overview

Methods from this talk

(timeout 10")

	rb	rel. rb	mb	rel. mb
solved	370	568	588	590
%	62.2	95.5	98.8	99.2
avg. CPU time	0.29"	0.88"	1.37"	0.93"

rb: right barren / **mb**: approx. RFC-match-bounded combined with weights + reversal; iterated for rel.

Example: ICFP/180915 (180 rules on 6 letters) $180 \stackrel{\text{rev}}{\longrightarrow} 180 \stackrel{\text{rel. mb}}{\longrightarrow} (2) 45 \stackrel{\text{rev}}{\longrightarrow} 45 \stackrel{\text{rel. mb}}{\longrightarrow} (1) 0$

Overview

Methods from this talk

(timeout 10")

	rb	rel. rb	mb	rel. mb
solved	370	568	588	590
%	62.2	95.5	98.8	99.2
avg. CPU time	0.29"	0.88"	1.37"	0.93"

rb: right barren / **mb**: approx. RFC-match-bounded combined with weights + reversal; iterated for rel.

Example: ICFP/180915 (180 rules on 6 letters) $180 \xrightarrow{\text{rev}} 180 \xrightarrow{\text{rel. mb}} \stackrel{\text{(1)}}{(2)} 45 \xrightarrow{\text{rev}} 45 \xrightarrow{\text{rel. mb}} \stackrel{\text{(1)}}{(1)} 0$

- Idea: remove relatively (on RFC) match-bounded rules (H/W'10)
- New: approximate this property fast
- Ingredients: (Dershowitz'81); (Büchi'64); (McNaughton'94, Geser'01); automata completion (various authors)
- Independent implementations in Matchbox and MnM

3/1

Termination of (string) rewriting

Modular termination proofs by removing rules

- SN(R): R is terminating (or: strongly normalizing) if every R-derivation contains only finitely many R-steps.
- SN(R/S): R is terminating relative to S if every (R∪S)-derivation contains only finitely many R-steps.
- Theorem: If SN(R/S) and SN(S) then $SN(R \cup S)$.

Termination of (string) rewriting

Modular termination proofs by removing rules

- SN(R): R is terminating (or: strongly normalizing) if every R-derivation contains only finitely many R-steps.
- SN(R/S): R is terminating relative to S if every $(R \cup S)$ -derivation contains only finitely many R-steps.
- Theorem: If SN(R/S) and SN(S) then $SN(R \cup S)$.

How to prove SN(R), or prove SN(R/S)?

Ad hoc approach: 0 ∈ finitely many.
 Show that R-steps do not occur in any R-derivation, or show that R-steps do not occur in any (R ∪ S)-derivation.

4 / 14

Termination of (string) rewriting

Modular termination proofs by removing rules

- SN(R): R is terminating (or: strongly normalizing) if every R-derivation contains only finitely many R-steps.
- SN(R/S): R is terminating relative to S if every $(R \cup S)$ -derivation contains only finitely many R-steps.
- Theorem: If SN(R/S) and SN(S) then $SN(R \cup S)$.

How to prove SN(R), or prove SN(R/S)?

- Ad hoc approach: 0 ∈ finitely many.
 Show that R-steps do not occur in any R-derivation, or show that R-steps do not occur in any (R ∪ S)-derivation.
- Nonsensical, this is never the case . . .
 - ... but could work for a restricted set of derivations.

Restricting the set of derivations

Definition: Right-hand sides of forward closures

- RFC(R) = $(\rightarrow_R \cup \neg_{right(R)})^*(rhs(R))$, where \rightarrow is suffix rewriting, and $right(R) = \{\ell_1 \rightarrow r \mid (\ell_1\ell_2 \rightarrow r) \in R, \ell_1 \neq \epsilon \neq \ell_2\}$.
- \rightarrow_R are inner steps,

4 / 14

 $\neg_{\mathsf{right}(R)}$ are suffix extension steps.

Restricting the set of derivations

Definition: Right-hand sides of forward closures

- $\mathsf{RFC}(R) = (\to_R \cup \to_{\mathsf{right}(R)})^*(\mathsf{rhs}(R)),$ where \to is suffix rewriting, and $\mathsf{right}(R) = \{\ell_1 \to r \mid (\ell_1 \ell_2 \to r) \in R, \ell_1 \neq \epsilon \neq \ell_2\}.$
- →_R are inner steps,
 ¬_{right(R)} are suffix extension steps.
- Theorem (Dershowitz'81)

R is terminating iff R is terminating on RFC(R).

Restricting the set of derivations

Definition: Right-hand sides of forward closures

- RFC(R) = $(\rightarrow_R \cup \neg_{\mathsf{right}(R)})^*(\mathsf{rhs}(R))$, where \rightarrow is suffix rewriting, and $\mathsf{right}(R) = \{\ell_1 \rightarrow r \mid (\ell_1 \ell_2 \rightarrow r) \in R, \ell_1 \neq \epsilon \neq \ell_2\}$.
- \rightarrow_R are inner steps, $\rightarrow_{\mathsf{right}(R)}$ are suffix extension steps.

Theorem (Dershowitz'81)

R is terminating iff R is terminating on RFC(R).

Example: $R = \{ab \rightarrow ba\}$

Here, right(R) = { $a \rightarrow ba$ }, so $RFC(R) = (\rightarrow_R \cup \rightarrow_{right(R)})^*(ba) = b^+a$. RFC(R) contains no R-redex, so R is terminating.

5/

Right barren string rewriting

Generalizing McNaughton'94, Geser'01 from 1-rule to arbitrary finite systems:

Definition: R is right barren

if no $\ell \in \mathsf{Ihs}(R)$ is factor of a string in RFC(R).

Right barren string rewriting

Generalizing McNaughton'94, Geser'01 from 1-rule to arbitrary finite systems:

Definition: R is right barren

if no $\ell \in \mathsf{Ihs}(R)$ is factor of a string in RFC(R).

Theorem

This property is decidable, and it implies termination.

6/

Right barren string rewriting

Generalizing McNaughton'94, Geser'01 from 1-rule to arbitrary finite systems:

Definition: R is right barren

if no $\ell \in \mathsf{Ihs}(R)$ is factor of a string in $\mathsf{RFC}(R)$.

Theorem

This property is decidable, and it implies termination.

Proof of decidability

If R is right barren, $RFC(R) = \neg_{right(R)} * (rhs(R))$. This set is regular, since regularity is preserved under suffix rewriting (Büchi'64).

Right barren string rewriting (cont'd)

Example: $R = \{babbaba \rightarrow abaabbabba\}$

Right barren string rewriting (cont'd)

Example: $R = \{babbaba \rightarrow abaabbabba\}$

Automaton accepting rhs(R):

Right barren string rewriting (cont'd)

Example: $R = \{babbaba \rightarrow abaabbabba\}$

Automaton accepting rhs(R):

Closure under $\neg_{\mathsf{right}(R)}$ by adding epsilon transitions:

7 / 14

Right barren string rewriting (cont'd)

Example: $R = \{babbaba \rightarrow abaabbabba\}$

Automaton accepting rhs(R):

$$\xrightarrow{a} \xrightarrow{b} \xrightarrow{a} \xrightarrow{a} \xrightarrow{b} \xrightarrow{b} \xrightarrow{b} \xrightarrow{b} \xrightarrow{b} \xrightarrow{a} \xrightarrow{b}$$

Closure under $\neg_{\mathsf{right}(R)}$ by adding epsilon transitions:

7 / 14

Right barren string rewriting (cont'd)

Example: $R = \{babbaba \rightarrow abaabbabba\}$

Automaton accepting rhs(R):

Closure under $\rightarrow_{\mathsf{right}(R)}$ by adding epsilon transitions:

7/1

Right barren string rewriting (cont'd)

Example: $R = \{babbaba \rightarrow abaabbabba\}$

Automaton accepting rhs(R):

$$\xrightarrow{a}\xrightarrow{b}\xrightarrow{a}\xrightarrow{a}\xrightarrow{b}\xrightarrow{b}\xrightarrow{b}\xrightarrow{b}\xrightarrow{a}\xrightarrow{a}$$

Closure under $\neg_{\mathsf{right}(R)}$ by adding epsilon transitions:

The left-hand side of R is not a factor of any accepted string, so R is right barren, thus terminating.

Right barren string rewriting (cont'd)

Closure algorithm: suffix matches

For state p, final state f, $(\ell_1 \to r) \in \operatorname{right}(R)$: If there is a path $p \stackrel{\ell_1}{\to} f$, add $p \stackrel{\varsigma}{\to} i$, where i is the initial state of the path for r.

8 /

Right barren string rewriting (cont'd)

Closure algorithm: suffix matches

For state p, final state f, $(\ell_1 \to r) \in \operatorname{right}(R)$: If there is a path $p \overset{\ell_1}{\to} f$, add $p \overset{\epsilon}{\to} i$, where i is the initial state of the path for r.

- Termination of this algorithm: No new nodes, so there are only finitely many possible epsilon transitions.
- Decide whether $\ell \in \mathit{lhs}(R)$ is a factor of some accepted string: check for path $\rho \stackrel{\ell}{\to} q$ (states are accessible and co-accessible).

Removing relatively right barren rules

Definition: $S \subseteq R$ is relatively right barren w. r. t. $R \setminus S$ if no $\ell \in \mathsf{lhs}(S)$ is factor of a string in RFC(R).

8 / 14

Removing relatively right barren rules

Definition: $S \subseteq R$ is relatively right barren w. r. t. $R \setminus S$ if no $\ell \in \mathsf{lhs}(S)$ is factor of a string in RFC(R).

Theorem: Let $S \subseteq R$ be relatively right barren w. r. t. $R \setminus S$. Then $\mathsf{SN}(R \setminus S)$ implies $\mathsf{SN}(R)$.

1 7

Theorem: Let S C R be relatively right barren w r + R \ S

Definition: $S \subseteq R$ is relatively right barren w. r. t. $R \setminus S$

Theorem: Let $S \subseteq R$ be relatively right barren w. r. t. $R \setminus S$. Then $\mathsf{SN}(R \setminus S)$ implies $\mathsf{SN}(R)$.

Closure algorithm: suffix and redex matches

Removing relatively right barren rules

if no $\ell \in \mathsf{Ihs}(S)$ is factor of a string in RFC(R).

Closure steps for suffix matches as before. Closure steps for redex matches: For states $p,\ q,\ {\rm and}\ (\ell \to r) \in R$:

If there is a path $p \stackrel{\ell}{\to} q$, add $p \stackrel{\epsilon}{\to} i$ and $f \stackrel{\epsilon}{\to} q$, where i and f are the initial resp. final state of

 $\begin{array}{c}
p & q \\
\downarrow & \uparrow \\
\downarrow & \uparrow \\
\downarrow & \uparrow \\
\uparrow & f
\end{array}$

9 / 14

Removing relatively right barren rules

Definition: $S \subseteq R$ is relatively right barren w. r. t. $R \setminus S$

if no $\ell \in \mathsf{Ihs}(S)$ is factor of a string in $\mathsf{RFC}(R)$.

Theorem: Let $S \subseteq R$ be relatively right barren w. r. t. $R \setminus S$.

Then $SN(R \setminus S)$ implies SN(R).

Closure algorithm: suffix and redex matches

Closure steps for suffix matches as before.

Closure steps for redex matches:

For states p, q, and $(\ell \to r) \in R$:

If there is a path $p \stackrel{\ell}{\sim} q$, add $p \stackrel{\epsilon}{\sim} i$ and $f \stackrel{\epsilon}{\sim} q$, where i and f are the initial resp. final state of the path for r.

 $\begin{array}{c}
p \rightarrow q \\
\downarrow \\
\downarrow \\
r \\
f \rightarrow
\end{array}$

The resulting automaton over-approximates RFC(R).

9 / 14

Removing relatively right barren rules (cont'd)

Example: $R = \{ab \rightarrow ba, ba \rightarrow acb\}$ (Zantema_04/z006)

Automaton for rhs(R):

the path for r.

 $\xrightarrow{a} \xrightarrow{c} \xrightarrow{b} \xrightarrow{b}$

10 / 1

Removing relatively right barren rules (cont'd)

Example: $R = \{ab \rightarrow ba, ba \rightarrow acb\}$ (Zantema_04/z006)

Automaton for rhs(R):

Closure under $\rightarrow_R \cup \neg_{\mathsf{right}(R)}$:

Removing relatively right barren rules (cont'd)

Example: $R = \{ab \rightarrow ba, ba \rightarrow acb\}$ (Zantema_04/z006)

Automaton for rhs(R):

Closure under $\rightarrow_R \cup \neg_{\mathsf{right}(R)}$:

10 / 1

Removing relatively right barren rules (cont'd)

Example: $R = \{ab \rightarrow ba, ba \rightarrow acb\}$ (Zantema_04/z006)

Automaton for rhs(R):

Closure under $\rightarrow_R \cup \neg_{\mathsf{right}(R)}$:

There is no path labelled by the left-hand side of $S = \{ab \rightarrow ba\}$: S is relatively right barren w. r. t. $R \setminus S$. As $R \setminus S = \{ba \rightarrow acb\}$ is terminating (it is right barren), R is terminating.

Approximating match-bounds

 \bullet Refine the approximation of RFC($\!R\!$) by match-heights (G/H/W'03).

10 / 14

Approximating match-bounds

- Refine the approximation of RFC(R) by match-heights (G/H/W'03).
- Fix $B \in \mathbb{N}$ and start with B+1 disjoints paths for each $r \in rhs(R)$. Layer $h \leq B$ corresponds to height h.
- Initial and final states are at height 0.

Approximating match-bounds

- Refine the approximation of RFC(R) by match-heights (G/H/W'03).
- Fix $B \in \mathbb{N}$ and start with B+1 disjoints paths for each $r \in rhs(R)$. Layer $h \leq B$ corresponds to height h.
- Initial and final states are at height 0.
- Suffix matches always link to height 0.
- Redex matches have height h = min(layer of letter transition); epsilon transitions have no height.
 Reject if h = B, otherwise link to reduct path at height h + 1.

11 / 14

Approximating match-bounds

- Refine the approximation of RFC(R) by match-heights (G/H/W'03).
- Fix $B \in \mathbb{N}$ and start with B+1 disjoints paths for each $r \in rhs(R)$. Layer $h \leq B$ corresponds to height h.
- Initial and final states are at height 0.
- Suffix matches always link to height 0.
- Redex matches have height h = min(layer of letter transition); epsilon transitions have no height.
 Reject if h = B, otherwise link to reduct path at height h + 1.
- In case of success: complete automaton is a certificate for match-bound B on RFC(R).

11 / 14

Approximating match-bounds (cont'd)

Example: $R = \{abaab \rightarrow baabbaa\}$ (Zantema_04/z034 reversed) $0 \quad b \quad 0 \quad a \quad 0 \quad b \quad 0 \quad b \quad 0 \quad a \quad 0 \quad a \quad 0$ $0 \quad b \quad 0 \quad a \quad 0 \quad b \quad 0 \quad a \quad 0 \quad a \quad 0$ Complete automaton is a certificate for match-bound 1 on RFC(R).

12 / 14

11 / 14

Approximating match-bounds (cont'd)

Example: $R = \{abaab \rightarrow baabbaa\}$ (Zantema_04/z034 reversed) $0 \quad b \quad 0 \quad a \quad 0 \quad b \quad 0 \quad b \quad 0 \quad a \quad 0 \quad a \quad 0$ $0 \quad b \quad 0 \quad a \quad 0 \quad b \quad 0 \quad b \quad 0 \quad a \quad 0 \quad a \quad 0$ Complete automaton is a certificate for match-bound 1 on RFC(R).

Removing relatively match-bounded rules (sketch)

- Now layer B represents all heights $\geq B$; we never reject.
- After completion, remove those rules where all redex heights are < B: they are match-bounded relative to the remaining rules by B on RFC, so they terminating relative to the remaining rules.

12 / 14

Summary and discussion

- This method solves SRS_STANDARD/ICFP_2010. Weaker on non-ICFP: Solves 164 of 1056.
- Cannot solve Zantema_04/z001.
- But, by iteration, solves problems that are not (RFC-)match-bounded.
- Two independent implementations: Confidence, no certification.
- Combined with drop common prefix/suffix, nearly solves Wenzel_16: MnM solves 222 of 226.
- Implementation: keep the set of epsilon transitions transitively closed.
- Strategy: fix B = 2 or choose $B = 0, 1, \dots$?

13 / 14

Summary and discussion

- This method solves SRS_STANDARD/ICFP_2010.
 Weaker on non-ICFP: Solves 164 of 1056.
- Cannot solve Zantema_04/z001.
- But, by iteration, solves problems that are not (RFC-)match-bounded.
- Two independent implementations: Confidence, no certification.
- Combined with drop common prefix/suffix, nearly solves Wenzel_16: MnM solves 222 of 226.
- Implementation: keep the set of epsilon transitions transitively closed.
- Strategy: fix B=2 or choose $B=0,\,1,\,\ldots$?
- Challenge: merge this method with the exact RFC-method (Endrullis/H/W'06).
- Challenge: termCOMP needs more SRS benchmarks
 — that are independent of any specific method.
 Continue systematic or random enumeration.