Approximating Relative Match-Bounds Alfons Geser ${ }^{1}$, Dieter Hofbauer ${ }^{2}$, Johannes Waldmann ${ }^{1}$ ${ }^{1}$ HTWK Leipzig (Germany), ${ }^{2}$ ASW Saarland (Germany) 18th Workshop on Termination Haifa, Israel, August 11-12, 2022				
1/14				
Motivation				
- large: avg. 70 rules of size 2340 (non-ICFP: 3.3 of size 21.5) - time consuming: VBS CPU time at termCOMP'21 avg. $90^{\prime \prime}$, median $28^{\prime \prime}$ (non-ICFP: avg. $51^{\prime \prime}$, median $6^{\prime \prime}$) - hard: VBS at termCOMP'21 solves 86 \% (non-ICFP: 96 \%)				
termCOMP'21 versus '22				
	Matchbox	MnM	VBS	
termCOMP'21 termCOMP'22	$\begin{aligned} & 510 \\ & 595 \end{aligned}$	$\begin{aligned} & 417 \\ & 594 \end{aligned}$	$\begin{aligned} & 514 \\ & 595 \end{aligned}$	

Motivation

The 595 problems from TPDB/SRS_STANDARD/ICFP_2010 are

- large: avg. 70 rules of size 2340 (non-ICFP: 3.3 of size 21.5)
- time consuming: VBS CPU time at termCOMP'21 avg. $90^{\prime \prime}$, median $28^{\prime \prime}$ (non-ICFP: avg. $51^{\prime \prime}$, median $6^{\prime \prime}$)
- hard: VBS at termCOMP'21 solves 86 \% (non-ICFP: 96 \%)

Overview

Methods from this talk
(timeout 10")

	rb	rel. rb	mb	rel. $\mathbf{m b}$
solved	370	568	588	590
$\%$	62.2	95.5	98.8	99.2
avg. CPU time	$0.29^{\prime \prime}$	$0.88^{\prime \prime}$	$1.377^{\prime \prime}$	$0.93^{\prime \prime}$

rb: right barren / mb: approx. RFC-match-bounded combined with weights + reversal; iterated for rel.

Overview

Methods from this talk
(timeout 10")

	rb	rel. rb	mb	rel. $\mathbf{~ m b}$
solved	370	568	588	590
$\%$	62.2	95.5	98.8	99.2
avg. CPU time	$0.29^{\prime \prime}$	$0.88^{\prime \prime}$	$1.377^{\prime \prime}$	$0.93^{\prime \prime}$

rb: right barren / mb: approx. RFC-match-bounded
combined with weights + reversal; iterated for rel.
Example: ICFP/180915 (180 rules on 6 letters)

$$
180 \xrightarrow{\text { rev }} 180 \xrightarrow{\text { rel. }{ }^{\mathrm{mb}}\left({ }^{(2)}\right.} 45 \xrightarrow{\text { rev }} 45 \xrightarrow{\text { rel. } \mathrm{mb}}{ }^{(1)} 0
$$

- Idea: remove relatively (on RFC) match-bounded rules (H/W'10)
- New: approximate this property fast
- Ingredients: (Dershowitz'81); (Büchi'64); (McNaughton'94, Geser'01); automata completion (various authors)
- Independent implementations in Matchbox and MnM

Termination of (string) rewriting
Modular termination proofs by removing rules

- $\mathrm{SN}(R): R$ is terminating (or: strongly normalizing) if every R-derivation contains only finitely many R-steps.
- $\operatorname{SN}(R / S): R$ is terminating relative to S if every $(R \cup S)$-derivation contains only finitely many R-steps.
- Theorem: If $\mathrm{SN}(R / S)$ and $\mathrm{SN}(S)$ then $\mathrm{SN}(R \cup S)$

> Termination of (string) rewriting
> Modular termination proofs by removing rules
> - SN(R): R is terminating (or: strongly normalizing) if every R-derivation contains only finitely many R-steps.
> - SN $(R / S): R$ is terminating relative to S if every $(R \cup S)$-derivation contains only finitely many R-steps.
> - Theorem: If $\operatorname{SN}(R / S)$ and $\operatorname{SN}(S)$ then $\operatorname{SN}(R \cup S)$.

How to prove $\operatorname{SN}(R)$, or prove $\mathrm{SN}(R / S)$?

- Ad hoc approach: $0 \in$ finitely many.

Show that R-steps do not occur in any R-derivation, or show that R-steps do not occur in any $(R \cup S)$-derivation.

Termination of (string) rewriting

Modular termination proofs by removing rules

- $\mathrm{SN}(R): R$ is terminating (or: strongly normalizing) if every R-derivation contains only finitely many R-steps.
- $\operatorname{SN}(R / S): R$ is terminating relative to S if every $(R \cup S)$-derivation contains only finitely many R-steps.
- Theorem: If $\mathrm{SN}(R / S)$ and $\mathrm{SN}(S)$ then $\mathrm{SN}(R \cup S)$

How to prove $\mathrm{SN}(R)$, or prove $\mathrm{SN}(R / S)$?

- Ad hoc approach: $0 \in$ finitely many.

Show that R-steps do not occur in any R-derivation, or show that R-steps do not occur in any $(R \cup S)$-derivation.

- Nonsensical, this is never the case . but could work for a restricted set of derivations.

Restricting the set of derivations

Definition: Right-hand sides of forward closures

- $\operatorname{RFC}(R)=\left(\rightarrow_{R} \cup \neg_{\text {right }}(R)\right)^{*}(\operatorname{rhs}(R))$,
where \rightarrow is suffix rewriting, and
$\operatorname{right}(R)=\left\{\ell_{1} \rightarrow r \mid\left(\ell_{1} \ell_{2} \rightarrow r\right) \in R, \ell_{1} \neq \epsilon \neq \ell_{2}\right\}$.
- \rightarrow_{R} are inner steps,
$\zeta_{\operatorname{right}(R)}$ are suffix extension steps.
Theorem (Dershowitz' 81)
R is terminating iff R is terminating on $\operatorname{RFC}(R)$.

Right barren string rewriting

Generalizing McNaughton'94, Geser'01
from 1-rule to arbitrary finite systems:
Definition: R is right barren
if no $\ell \in \operatorname{lhs}(R)$ is factor of a string in $\operatorname{RFC}(R)$.

Right barren string rewriting

Generalizing McNaughton'94, Geser'01
from 1-rule to arbitrary finite systems:
Definition: R is right barren
if no $\ell \in \operatorname{lhs}(R)$ is factor of a string in $\operatorname{RFC}(R)$.

Theorem

This property is decidable, and it implies termination.

Proof of decidability

If R is right barren, $\operatorname{RFC}(R)=\tau_{\operatorname{right}(R)}{ }^{*}(\operatorname{rhs}(R))$. This set is regular, since regularity is preserved under suffix rewriting (Büchi'64).

Restricting the set of derivations
Definition: Right-hand sides of forward closures

- $\operatorname{RFC}(R)=\left(\rightarrow_{R} \cup \neg_{\operatorname{right}(R)}\right)^{*}(\operatorname{rhs}(R))$,
where \rightharpoondown is suffix rewriting, and

$$
\operatorname{right}(R)=\left\{\ell_{1} \rightarrow r \mid\left(\ell_{1} \ell_{2} \rightarrow r\right) \in R, \ell_{1} \neq \epsilon \neq \ell_{2}\right\}
$$

- \rightarrow_{R} are inner steps,
$\sigma_{\text {right }(R)}$ are suffix extension steps.
\qquad

Restricting the set of derivations

Definition: Right-hand sides of forward closures

- $\operatorname{RFC}(R)=\left(\rightarrow_{R} \cup \neg_{\text {right }(R)}\right)^{*}(\operatorname{rhs}(R))$,
where \rightharpoondown is suffix rewriting, and
$\operatorname{right}(R)=\left\{\ell_{1} \rightarrow r \mid\left(\ell_{1} \ell_{2} \rightarrow r\right) \in R, \ell_{1} \neq \epsilon \neq \ell_{2}\right\}$.
- \rightarrow_{R} are inner steps,
$\zeta_{\text {right }}(R)$ are suffix extension steps.

Theorem (Dershowitz'81)

R is terminating iff R is terminating on $\operatorname{RFC}(R)$.
Example: $R=\{a b \rightarrow b a\}$
Here, $\operatorname{right}(R)=\{a \rightarrow b a\}$, so $\operatorname{RFC}(R)=\left(\rightarrow_{R} \cup \neg_{\operatorname{right}(R)}\right)^{*}(b a)=b^{+} a$. $\operatorname{RFC}(R)$ contains no R-redex, so R is terminating.

Right barren string rewriting

Generalizing McNaughton'94, Geser'01
from 1-rule to arbitrary finite systems:
Definition: R is right barren
if no $\ell \in \operatorname{lhs}(R)$ is factor of a string in $\operatorname{RFC}(R)$.

Theorem

This property is decidable, and it implies termination.

Right barren string rewriting (cont'd)

Example: $R=\{b a b b a b a \rightarrow$ abaabbabba $\}$

Right barren string rewriting (contd)

Example: $R=\{$ babbaba \rightarrow abaabbabba $\}$
Automaton accepting vhs (R) :

Right barren string rewriting (contd)

Example: $R=\{$ babbaba \rightarrow abaabbabba $\}$
Automaton accepting vhs (R) :

$$
\rightarrow \bigcirc \stackrel{a}{\rightarrow} \bigcirc \stackrel{b}{\rightarrow} \bigcirc \stackrel{a}{\rightarrow} \bigcirc \stackrel{a}{\rightarrow} \bigcirc \stackrel{b}{\rightarrow} \bigcirc \stackrel{b}{\rightarrow} \bigcirc \stackrel{a}{\rightarrow} \bigcirc \stackrel{b}{\rightarrow} \bigcirc \stackrel{b}{\rightarrow} \bigcirc \stackrel{a}{\rightarrow} \bigcirc
$$

Closure under $\neg_{\text {right }(R)}$ by adding epsilon transitions:

Right barren string rewriting (cont'd)

Example: $R=\{$ babbaba \rightarrow abaabbabba $\}$
Automaton accepting hs (R) :

$$
\rightarrow \bigcirc \xrightarrow{a} \bigcirc \xrightarrow{b} \bigcirc \xrightarrow{a} \bigcirc \xrightarrow{a} \bigcirc \xrightarrow{b} \bigcirc \xrightarrow{b} \bigcirc \xrightarrow{a} \bigcirc \xrightarrow{b} \bigcirc \xrightarrow{b} \bigcirc \stackrel{a}{\rightarrow}
$$

Closure under $\tau_{\text {right }(R)}$ by adding epsilon transitions:

$$
\rightarrow \stackrel{i}{i} \bigcirc \xrightarrow{b} \bigcirc \xrightarrow{a} \bigcirc \xrightarrow{a} \bigcirc \xrightarrow{b} \bigcirc \xrightarrow{b} \bigcirc \xrightarrow{a} \bigcirc \xrightarrow{b} \bigcirc \xrightarrow{a}
$$

Right barren string rewriting (cont'd)
Example: $R=\{$ babbaba \rightarrow abaabbabba $\}$
Automaton accepting ihs (R) :

$$
\rightarrow 0^{3} \rightarrow 0^{6} \rightarrow 0^{3} \rightarrow 0^{6} \rightarrow 0^{6} \rightarrow 0^{3} \rightarrow 0^{6} \rightarrow 0^{3} \rightarrow 0 \rightarrow 2
$$

Closure under $\tau_{\mathrm{right}}(R)$ by adding epsilon transitions:

Right barren string rewriting (cont'd)

Closure algorithm: suffix matches

For state p, final state $f,\left(\ell_{1} \rightarrow r\right) \in \operatorname{right}(R)$:
If there is a path $p \xrightarrow{\ell_{1}} f$, add $p \xrightarrow{\epsilon} i$,
where i is the initial state of the path for r.

Right barren string rewriting (cont'd)

Closure algorithm: suffix matches

For state p, final state $f,\left(\ell_{1} \rightarrow r\right) \in \operatorname{right}(R)$: If there is a path $p \xrightarrow{\ell_{1}} f$, add $p \xrightarrow{\epsilon} i$, where i is the initial state of the path for r.

- Termination of this algorithm: No new nodes, so there are only finitely many possible epsilon transitions.
- Decide whether $\ell \in \operatorname{lhs}(R)$ is a factor of some accepted string: check for path $p \xrightarrow{\ell} q$ (states are accessible and co-accessible).

Removing relatively right barren rules
Definition: $S \subseteq R$ is relatively right barren w. r. t. $R \backslash S$
if no $\ell \in \operatorname{lhs}(S)$ is factor of a string in $\operatorname{RFC}(R)$.
Removing relatively right barren rules
Definition: $S \subseteq R$ is relatively right barren w. r. t. $R \backslash S$
if no $\ell \in \operatorname{lhs}(S)$ is factor of a string in $\operatorname{RFC}(R)$.

Theorem: Let $S \subseteq R$ be relatively right barren w. r. t. $R \backslash S$.
Then $\mathrm{SN}(R \backslash S)$ implies $\mathrm{SN}(R)$.

Removing relatively right barren rules
Definition: $S \subseteq R$ is relatively right barren w. r. t. $R \backslash S$
if no $\ell \in \operatorname{lhs}(S)$ is factor of a string in $\operatorname{RFC}(R)$.
Theorem: Let $S \subseteq R$ be relatively right barren w. r. t. $R \backslash S$.
Then $\mathrm{SN}(R \backslash S)$ implies $\mathrm{SN}(R)$.
Closure algorithm: suffix and redex matches
Closure steps for suffix matches as before.
Closure steps for redex matches:
For states p, q, and $(\ell \rightarrow r) \in R$:
If there is a path $p \xrightarrow{\ell} q$, add $p \xrightarrow{\epsilon} i$ and $f \xrightarrow{\epsilon} q$, where i and f are the initial resp. final state of
 the path for r.

The resulting automaton over-approximates $\operatorname{RFC}(R)$.

Example: $R=\{a b \rightarrow b a, b a \rightarrow a c b\}$ (Zantema_04/z006)
Automaton for $\mathrm{rhs}(R)$:

$$
\rightarrow \bigcirc \xrightarrow{b} \bigcirc \xrightarrow{a} \bigcirc
$$

Closure under $\rightarrow_{R} \cup \rightharpoondown_{\operatorname{right}(R)}$:

Removing relatively right barren rules
Definition: $S \subseteq R$ is relatively right barren w. r. t. $R \backslash S$ if no $\ell \in \operatorname{lhs}(S)$ is factor of a string in $\operatorname{RFC}(R)$.

Theorem: Let $S \subseteq R$ be relatively right barren w. r. t. $R \backslash S$. Then $\mathrm{SN}(R \backslash S)$ implies $\mathrm{SN}(R)$.

Closure algorithm: suffix and redex matches
Closure steps for suffix matches as before.
Closure steps for redex matches:
For states p, q, and $(\ell \rightarrow r) \in R$:
If there is a path $p \xrightarrow{\ell} q$, add $p \xrightarrow{\epsilon} i$ and $f \xrightarrow{\epsilon} q$, where i and f are the initial resp. final state of the path for r.

Removing relatively right barren rules (cont'd)
Example: $R=\{a b \rightarrow b a, b a \rightarrow a c b\}$ (Zantema_04/z006)

Removing relatively right barren rules (cont'd)
Example: $R=\{a b \rightarrow b a, b a \rightarrow a c b\}$ (Zantema_04/z006)
Automaton for $\operatorname{rhs}(R)$:
 $\rightarrow \bigcirc \xrightarrow{a} \bigcirc \stackrel{c}{\rightarrow} \bigcirc$

Closure under $\rightarrow_{R} \cup \rightharpoondown_{\text {right }}(R)$:

There is no path labelled by the left-hand side of $S=\{a b \rightarrow b a\}$: S is relatively right barren w. r. t. $R \backslash S$. As $R \backslash S=\{b a \rightarrow a c b\}$ is terminating (it is right barren), R is terminating.

Approximating match-bounds

- Refine the approximation of $\operatorname{RFC}(R)$ by match-heights (G/H/W'03).

Approximating match-bounds

- Refine the approximation of $\operatorname{RFC}(R)$ by match-heights (G/H/W'03).
- Fix $B \in \mathbb{N}$ and start with $B+1$ disjoints paths for each $r \in \operatorname{rhs}(R)$ Layer $h \leq B$ corresponds to height h.
- Initial and final states are at height 0 .

Approximating match-bounds

- Refine the approximation of $\operatorname{RFC}(R)$ by match-heights (G/H/W'03).
- Fix $B \in \mathbb{N}$ and start with $B+1$ disjoints paths for each $r \in \operatorname{rhs}(R)$. Layer $h \leq B$ corresponds to height h.
- Initial and final states are at height 0 .
- Suffix matches always link to height 0 .
- Redex matches have height $h=\min$ (layer of letter transition); epsilon transitions have no height.
Reject if $h=B$, otherwise link to reduct path at height $h+1$.
- In case of success: complete automaton is a certificate for match-bound B on $\operatorname{RFC}(R)$.

11/14

Removing relatively match-bounded rules (sketch)

- Now layer B represents all heights $\geq B$; we never reject.
- After completion, remove those rules where all redex heights are $<B$: they are match-bounded relative to the remaining rules by B on RFC, so they terminating relative to the remaining rules.

Approximating match-bounds

- Refine the approximation of $\operatorname{RFC}(R)$ by match-heights (G/H/W'03).
- Fix $B \in \mathbb{N}$ and start with $B+1$ disjoints paths for each $r \in \operatorname{rhs}(R)$. Layer $h \leq B$ corresponds to height h.
- Initial and final states are at height 0 .
- Suffix matches always link to height 0 .
- Redex matches have height $h=\min$ (layer of letter transition); epsilon transitions have no height.
Reject if $h=B$, otherwise link to reduct path at height $h+1$.
\qquad

Summary and discussion

- This method solves SRS_STANDARD/ICFP_2010. Weaker on non-ICFP: Solves 164 of 1056.
- Cannot solve Zantema_04/z001.
- But, by iteration, solves problems that are not (RFC-)match-bounded
- Two independent implementations: Confidence, no certification.
- Combined with drop common prefix/suffix, nearly solves Wenzel_16: MnM solves 222 of 226 .
- Implementation: keep the set of epsilon transitions transitively closed.
- Strategy: fix $B=2$ or choose $B=0,1, \ldots$?

Summary and discussion

- This method solves SRS_STANDARD/ICFP_2010.

Weaker on non-ICFP: Solves 164 of 1056.

- Cannot solve Zantema_04/z001.
- But, by iteration, solves problems that are not (RFC-)match-bounded.
- Two independent implementations: Confidence, no certification.
- Combined with drop common prefix/suffix, nearly solves Wenzel_16: MnM solves 222 of 226 .
- Implementation: keep the set of epsilon transitions transitively closed.
- Strategy: fix $B=2$ or choose $B=0,1, \ldots$?
- Challenge: merge this method with the exact RFC-method (Endrullis/H/W'06).
- Challenge: termCOMP needs more SRS benchmarks - that are independent of any specific method. Continue systematic or random enumeration.

