Approximating Relative Match-Bounds

Alfons Geser¹, Dieter Hofbauer², Johannes Waldmann¹

¹HTWK Leipzig (Germany), ²ASW Saarland (Germany)

18th Workshop on Termination Haifa, Israel, August 11–12, 2022

Motivation

The 595 problems from TPDB/SRS_STANDARD/ICFP_2010 are

- large: avg. 70 rules of size 2340 (non-ICFP: 3.3 of size 21.5)
- time consuming: VBS CPU time at termCOMP'21 avg. 90", median 28" (non-ICFP: avg. 51", median 6")
- hard: VBS at termCOMP'21 solves 86 % (non-ICFP: 96 %)

Motivation

The 595 problems from TPDB/SRS_STANDARD/ICFP_2010 are

- large: avg. 70 rules of size 2340 (non-ICFP: 3.3 of size 21.5)
- time consuming: VBS CPU time at termCOMP'21 avg. 90", median 28" (non-ICFP: avg. 51", median 6")

hard: VBS at termCOMP'21 solves 86 % (non-ICFP: 96 %)

termCOMP'21 versus	s '22			
		Matchbox	MnM	VBS
termCOMP	'21	510	417	514
termCOMP	'22	595	594	595

Overview

Methods from this talk

(timeout 10")

	rb	rel. rb	mb	rel. mb
solved	370	568	588	590
%	62.2	95.5	98.8	99.2
avg. CPU time	0.29"	0.88"	1.37"	0.93"

rb: right barren / **mb**: approx. RFC-match-bounded combined with weights + reversal; iterated for rel.

Overview

Methods from this talk

(timeout 10")

	rb	rel. rb	mb	rel. mb
solved	370	568	588	590
%	62.2	95.5	98.8	99.2
avg. CPU time	0.29"	0.88"	1.37"	0.93"

rb: right barren / **mb**: approx. RFC-match-bounded combined with weights + reversal; iterated for rel.

Example: ICFP/180915 (180 rules on 6 letters) $180 \xrightarrow{\text{rev}} 180 \xrightarrow{\text{rel. mb}} 45 \xrightarrow{\text{rev}} 45 \xrightarrow{\text{rel. mb}} 0$

Overview

Methods from this talk

(timeout 10")

	rb	rel. rb	mb	rel. mb
solved	370	568	588	590
%	62.2	95.5	98.8	99.2
avg. CPU time	0.29"	0.88"	1.37"	0.93"

rb: right barren / **mb**: approx. RFC-match-bounded combined with weights + reversal; iterated for rel.

Example: ICFP/180915 (180 rules on 6 letters) $180 \xrightarrow{\text{rev}} 180 \xrightarrow{\text{rel. mb}} 45 \xrightarrow{\text{rev}} 45 \xrightarrow{\text{rel. mb}} 0$

- Idea: remove relatively (on RFC) match-bounded rules (H/W'10)
- New: approximate this property fast
- Ingredients: (Dershowitz'81); (Büchi'64); (McNaughton'94, Geser'01); automata completion (various authors)
- Independent implementations in Matchbox and MnM

Termination of (string) rewriting

Modular termination proofs by removing rules

- SN(*R*): *R* is *terminating* (or: *strongly normalizing*) if every *R*-derivation contains only finitely many *R*-steps.
- SN(R/S): R is terminating relative to S if every (R ∪ S)-derivation contains only finitely many R-steps.
- Theorem: If SN(R/S) and SN(S) then $SN(R \cup S)$.

Termination of (string) rewriting

Modular termination proofs by removing rules

- SN(*R*): *R* is *terminating* (or: *strongly normalizing*) if every *R*-derivation contains only finitely many *R*-steps.
- SN(R/S): R is terminating relative to S if every (R ∪ S)-derivation contains only finitely many R-steps.
- Theorem: If SN(R/S) and SN(S) then $SN(R \cup S)$.

How to prove SN(R), or prove SN(R/S)?

Ad hoc approach: 0 ∈ finitely many.
 Show that *R*-steps do not occur in any *R*-derivation, or show that *R*-steps do not occur in any (*R* ∪ *S*)-derivation.

Termination of (string) rewriting

Modular termination proofs by removing rules

- SN(*R*): *R* is *terminating* (or: *strongly normalizing*) if every *R*-derivation contains only finitely many *R*-steps.
- SN(R/S): R is terminating relative to S if every (R ∪ S)-derivation contains only finitely many R-steps.
- Theorem: If SN(R/S) and SN(S) then $SN(R \cup S)$.

How to prove SN(R), or prove SN(R/S)?

- Ad hoc approach: 0 ∈ finitely many.
 Show that *R*-steps do not occur in any *R*-derivation, or show that *R*-steps do not occur in any (*R* ∪ *S*)-derivation.
- Nonsensical, this is never the case ...
 - ... but could work for a restricted set of derivations.

Restricting the set of derivations

Definition: Right-hand sides of forward closures

•
$$\mathsf{RFC}(R) = (\rightarrow_R \cup \neg_{\mathsf{right}(R)})^*(\mathsf{rhs}(R)),$$

where \neg is suffix rewriting, and
 $\mathsf{right}(R) = \{\ell_1 \rightarrow r \mid (\ell_1 \ell_2 \rightarrow r) \in R, \ell_1 \neq \epsilon \neq \ell_2\}.$

• \rightarrow_R are inner steps, $\neg_{right(R)}$ are suffix extension steps.

Restricting the set of derivations

Definition: Right-hand sides of forward closures

•
$$\mathsf{RFC}(R) = (\rightarrow_R \cup \neg_{\mathsf{right}(R)})^*(\mathsf{rhs}(R)),$$

where \neg is suffix rewriting, and
 $\mathsf{right}(R) = \{\ell_1 \rightarrow r \mid (\ell_1 \ell_2 \rightarrow r) \in R, \ell_1 \neq \epsilon \neq \ell_2\}$

• \rightarrow_R are inner steps, $\neg_{right(R)}$ are suffix extension steps.

Theorem (Dershowitz'81)

R is terminating iff R is terminating on RFC(R).

Restricting the set of derivations

Definition: Right-hand sides of forward closures

•
$$\mathsf{RFC}(R) = (\rightarrow_R \cup \neg_{\mathsf{right}(R)})^*(\mathsf{rhs}(R)),$$

where \neg is suffix rewriting, and
 $\mathsf{right}(R) = \{\ell_1 \rightarrow r \mid (\ell_1 \ell_2 \rightarrow r) \in R, \ell_1 \neq \epsilon \neq \ell_2\}$

• \rightarrow_R are inner steps, $\neg_{\mathsf{right}(R)}$ are suffix extension steps.

Theorem (Dershowitz'81)

R is terminating iff R is terminating on RFC(R).

Example: $R = \{ab \rightarrow ba\}$

Here, right(R) = { $a \rightarrow ba$ }, so RFC(R) = ($\rightarrow_R \cup \neg_{right(R)}$)*(ba) = b^+a . RFC(R) contains no R-redex, so R is terminating.

Right barren string rewriting

Generalizing McNaughton'94, Geser'01 from 1-rule to arbitrary finite systems:

Definition: *R* is *right barren*

if no $\ell \in \text{lhs}(R)$ is factor of a string in RFC(R).

Right barren string rewriting

Generalizing McNaughton'94, Geser'01 from 1-rule to arbitrary finite systems:

Definition: *R* is *right barren*

if no $\ell \in \text{lhs}(R)$ is factor of a string in RFC(R).

Theorem

This property is decidable, and it implies termination.

Right barren string rewriting

Generalizing McNaughton'94, Geser'01 from 1-rule to arbitrary finite systems:

Definition: *R* is *right barren*

if no $\ell \in \text{lhs}(R)$ is factor of a string in RFC(R).

Theorem

This property is decidable, and it implies termination.

Proof of decidability

If *R* is right barren, $\operatorname{RFC}(R) = -\operatorname{right}(R)^*(\operatorname{rhs}(R))$. This set is regular, since regularity is preserved under suffix rewriting (Büchi'64).

Example: $R = \{babbaba \rightarrow abaabbabba\}$

Example: $R = \{babbaba \rightarrow abaabbabba\}$

Automaton accepting rhs(R):

Example: $R = \{babbaba \rightarrow abaabbabba\}$

Automaton accepting rhs(R):

Closure under $\neg_{right(R)}$ by adding epsilon transitions:

Example: $R = \{babbaba \rightarrow abaabbabba\}$

Automaton accepting rhs(R):

Closure under $\neg_{right(R)}$ by adding epsilon transitions:

Example: $R = \{babbaba \rightarrow abaabbabba\}$

Automaton accepting rhs(R):

Closure under $\neg_{right(R)}$ by adding epsilon transitions:

Example: $R = \{babbaba \rightarrow abaabbabba\}$

Automaton accepting rhs(R):

Closure under $\neg_{right(R)}$ by adding epsilon transitions:

The left-hand side of R is not a factor of any accepted string, so R is right barren, thus terminating.

Closure algorithm: suffix matches

For state p, final state f, $(\ell_1 \rightarrow r) \in \operatorname{right}(R)$: If there is a path $p \stackrel{\ell_1}{\rightarrow} f$, add $p \stackrel{\epsilon}{\rightarrow} i$, where i is the initial state of the path for r.

Closure algorithm: suffix matches

For state p, final state f, $(\ell_1 \rightarrow r) \in \operatorname{right}(R)$: If there is a path $p \stackrel{\ell_1}{\rightarrow} f$, add $p \stackrel{\epsilon}{\rightarrow} i$, where i is the initial state of the path for r.

 Decide whether l ∈ lhs(R) is a factor of some accepted string: check for path p → q (states are accessible and co-accessible).

Definition: $S \subseteq R$ is relatively right barren w. r. t. $R \setminus S$

if no $\ell \in \text{lhs}(S)$ is factor of a string in RFC(R).

Definition: $S \subseteq R$ is relatively right barren w. r. t. $R \setminus S$ if no $\ell \in \text{lhs}(S)$ is factor of a string in RFC(R).

Theorem: Let $S \subseteq R$ be relatively right barren w. r. t. $R \setminus S$. Then $SN(R \setminus S)$ implies SN(R).

Definition: $S \subseteq R$ is relatively right barren w. r. t. $R \setminus S$ if no $\ell \in \text{Ihs}(S)$ is factor of a string in RFC(R).

Theorem: Let $S \subseteq R$ be relatively right barren w. r. t. $R \setminus S$. Then $SN(R \setminus S)$ implies SN(R).

Closure algorithm: suffix and redex matches

Closure steps for suffix matches as before. Closure steps for redex matches: For states p, q, and $(\ell \rightarrow r) \in R$: If there is a path $p \stackrel{\ell}{\rightarrow} q$, add $p \stackrel{\epsilon}{\rightarrow} i$ and $f \stackrel{\epsilon}{\rightarrow} q$, where i and f are the initial resp. final state of the path for r.

Definition: $S \subseteq R$ is relatively right barren w. r. t. $R \setminus S$ if no $\ell \in \text{Ihs}(S)$ is factor of a string in RFC(R).

Theorem: Let $S \subseteq R$ be relatively right barren w. r. t. $R \setminus S$. Then $SN(R \setminus S)$ implies SN(R).

Closure algorithm: suffix and redex matches

Closure steps for suffix matches as before. Closure steps for redex matches: For states p, q, and $(\ell \rightarrow r) \in R$: If there is a path $p \stackrel{\ell}{\rightarrow} q$, add $p \stackrel{\epsilon}{\rightarrow} i$ and $f \stackrel{\epsilon}{\rightarrow} q$, where i and f are the initial resp. final state of the path for r.

The resulting automaton over-approximates RFC(R).

Example: $R = \{ab \rightarrow ba, ba \rightarrow acb\}$ (Zantema_04/z006)

Automaton for rhs(R):

Example: $R = \{ab \rightarrow ba, ba \rightarrow acb\}$ (Zantema_04/z006)

Automaton for rhs(R):

Closure under $\rightarrow_R \cup \neg_{\mathsf{right}(R)}$:

Example: $R = \{ab \rightarrow ba, ba \rightarrow acb\}$ (Zantema_04/z006)

Automaton for rhs(R):

Closure under $\rightarrow_R \cup \neg_{\mathsf{right}(R)}$:

Example: $R = \{ab \rightarrow ba, ba \rightarrow acb\}$ (Zantema_04/z006)

Automaton for rhs(R):

Closure under $\rightarrow_R \cup \neg_{\mathsf{right}(R)}$:

There is no path labelled by the left-hand side of $S = \{ab \rightarrow ba\}$: S is relatively right barren w. r. t. $R \setminus S$. As $R \setminus S = \{ba \rightarrow acb\}$ is terminating (it is right barren), R is terminating.

• Refine the approximation of RFC(R) by match-heights (G/H/W'03).

- Refine the approximation of RFC(R) by match-heights (G/H/W'03).
- Fix B ∈ N and start with B + 1 disjoints paths for each r ∈ rhs(R). Layer h ≤ B corresponds to height h.
- Initial and final states are at height 0.

- Refine the approximation of RFC(R) by match-heights (G/H/W'03).
- Fix B ∈ N and start with B + 1 disjoints paths for each r ∈ rhs(R). Layer h ≤ B corresponds to height h.
- Initial and final states are at height 0.
- Suffix matches always link to height 0.
- Redex matches have height h = min(layer of letter transition); epsilon transitions have no height.
 Reject if h = B, otherwise link to reduct path at height h + 1.

- Refine the approximation of RFC(R) by match-heights (G/H/W'03).
- Fix B ∈ N and start with B + 1 disjoints paths for each r ∈ rhs(R). Layer h ≤ B corresponds to height h.
- Initial and final states are at height 0.
- Suffix matches always link to height 0.
- Redex matches have height h = min(layer of letter transition); epsilon transitions have no height.
 Reject if h = B, otherwise link to reduct path at height h + 1.
- In case of success: complete automaton is a certificate for match-bound B on RFC(R).

Approximating match-bounds (cont'd)

Example: $R = \{abaab \rightarrow baabbaa\}$ (Zantema_04/z034 reversed)

Approximating match-bounds (cont'd)

Example: $R = \{abaab \rightarrow baabbaa\}$ (Zantema_04/z034 reversed)

Complete automaton is a certificate for match-bound 1 on RFC(R).

Removing relatively match-bounded rules (sketch)

- Now layer B represents all heights $\geq B$; we never reject.
- After completion, remove those rules where all redex heights are < B: they are match-bounded relative to the remaining rules by B on RFC, so they terminating relative to the remaining rules.

Summary and discussion

- This method solves SRS_STANDARD/ICFP_2010. Weaker on non-ICFP: Solves 164 of 1056.
- Cannot solve Zantema_04/z001.
- But, by iteration, solves problems that are not (RFC-)match-bounded.
- Two independent implementations: Confidence, no certification.
- Combined with *drop common prefix/suffix*, nearly solves Wenzel_16: MnM solves 222 of 226.
- Implementation: keep the set of epsilon transitions transitively closed.
- Strategy: fix B = 2 or choose B = 0, 1, ...?

Summary and discussion

- This method solves SRS_STANDARD/ICFP_2010. Weaker on non-ICFP: Solves 164 of 1056.
- Cannot solve Zantema_04/z001.
- But, by iteration, solves problems that are not (RFC-)match-bounded.
- Two independent implementations: Confidence, no certification.
- Combined with *drop common prefix/suffix*, nearly solves Wenzel_16: MnM solves 222 of 226.
- Implementation: keep the set of epsilon transitions transitively closed.
- Strategy: fix B = 2 or choose B = 0, 1, ...?
- Challenge: merge this method with the exact RFC-method (Endrullis/H/W'06).
- Challenge: termCOMP needs more SRS benchmarks
 that are independent of any specific method.
 Continue systematic or random enumeration.