
Approximating Relative Match-Bounds

Alfons Geser1, Dieter Hofbauer 2, Johannes Waldmann1

1HTWK Leipzig (Germany), 2ASW Saarland (Germany)

18th Workshop on Termination
Haifa, Israel, August 11–12, 2022

1 / 14



Motivation

The 595 problems from TPDB/SRS STANDARD/ICFP 2010 are

large: avg. 70 rules of size 2340 (non-ICFP: 3.3 of size 21.5)

time consuming: VBS CPU time at termCOMP’21
avg. 90”, median 28” (non-ICFP: avg. 51”, median 6”)

hard: VBS at termCOMP’21 solves 86 % (non-ICFP: 96 %)

termCOMP’21 versus ’22

Matchbox MnM VBS

termCOMP’21 510 417 514
termCOMP’22 595 594 595

2 / 14



Motivation

The 595 problems from TPDB/SRS STANDARD/ICFP 2010 are

large: avg. 70 rules of size 2340 (non-ICFP: 3.3 of size 21.5)

time consuming: VBS CPU time at termCOMP’21
avg. 90”, median 28” (non-ICFP: avg. 51”, median 6”)

hard: VBS at termCOMP’21 solves 86 % (non-ICFP: 96 %)

termCOMP’21 versus ’22

Matchbox MnM VBS

termCOMP’21 510 417 514
termCOMP’22 595 594 595

2 / 14



Overview

Methods from this talk (timeout 10”)

rb rel. rb mb rel. mb
solved 370 568 588 590

% 62.2 95.5 98.8 99.2

avg. CPU time 0.29” 0.88” 1.37” 0.93”

rb: right barren / mb: approx. RFC-match-bounded
combined with weights + reversal; iterated for rel.

Example: ICFP/180915 (180 rules on 6 letters)

180
rev−→ 180

rel. mb (2)−→ 45
rev−→ 45

rel. mb (1)−→ 0

Idea: remove relatively (on RFC) match-bounded rules (H/W’10)

New: approximate this property fast

Ingredients: (Dershowitz’81); (Büchi’64); (McNaughton’94,
Geser’01); automata completion (various authors)

Independent implementations in Matchbox and MnM

3 / 14



Overview

Methods from this talk (timeout 10”)

rb rel. rb mb rel. mb
solved 370 568 588 590

% 62.2 95.5 98.8 99.2

avg. CPU time 0.29” 0.88” 1.37” 0.93”

rb: right barren / mb: approx. RFC-match-bounded
combined with weights + reversal; iterated for rel.

Example: ICFP/180915 (180 rules on 6 letters)

180
rev−→ 180

rel. mb (2)−→ 45
rev−→ 45

rel. mb (1)−→ 0

Idea: remove relatively (on RFC) match-bounded rules (H/W’10)

New: approximate this property fast

Ingredients: (Dershowitz’81); (Büchi’64); (McNaughton’94,
Geser’01); automata completion (various authors)

Independent implementations in Matchbox and MnM

3 / 14



Overview

Methods from this talk (timeout 10”)

rb rel. rb mb rel. mb
solved 370 568 588 590

% 62.2 95.5 98.8 99.2

avg. CPU time 0.29” 0.88” 1.37” 0.93”

rb: right barren / mb: approx. RFC-match-bounded
combined with weights + reversal; iterated for rel.

Example: ICFP/180915 (180 rules on 6 letters)

180
rev−→ 180

rel. mb (2)−→ 45
rev−→ 45

rel. mb (1)−→ 0

Idea: remove relatively (on RFC) match-bounded rules (H/W’10)

New: approximate this property fast

Ingredients: (Dershowitz’81); (Büchi’64); (McNaughton’94,
Geser’01); automata completion (various authors)

Independent implementations in Matchbox and MnM
3 / 14



Termination of (string) rewriting

Modular termination proofs by removing rules

SN(R): R is terminating (or: strongly normalizing) if
every R-derivation contains only finitely many R-steps.

SN(R/S): R is terminating relative to S if
every (R ∪ S)-derivation contains only finitely many R-steps.

Theorem: If SN(R/S) and SN(S) then SN(R ∪ S).

How to prove SN(R), or prove SN(R/S)?

Ad hoc approach: 0 ∈ finitely many.
Show that R-steps do not occur in any R-derivation, or
show that R-steps do not occur in any (R ∪ S)-derivation.

Nonsensical, this is never the case . . .
. . . but could work for a restricted set of derivations.

4 / 14



Termination of (string) rewriting

Modular termination proofs by removing rules

SN(R): R is terminating (or: strongly normalizing) if
every R-derivation contains only finitely many R-steps.

SN(R/S): R is terminating relative to S if
every (R ∪ S)-derivation contains only finitely many R-steps.

Theorem: If SN(R/S) and SN(S) then SN(R ∪ S).

How to prove SN(R), or prove SN(R/S)?

Ad hoc approach: 0 ∈ finitely many.
Show that R-steps do not occur in any R-derivation, or
show that R-steps do not occur in any (R ∪ S)-derivation.

Nonsensical, this is never the case . . .
. . . but could work for a restricted set of derivations.

4 / 14



Termination of (string) rewriting

Modular termination proofs by removing rules

SN(R): R is terminating (or: strongly normalizing) if
every R-derivation contains only finitely many R-steps.

SN(R/S): R is terminating relative to S if
every (R ∪ S)-derivation contains only finitely many R-steps.

Theorem: If SN(R/S) and SN(S) then SN(R ∪ S).

How to prove SN(R), or prove SN(R/S)?

Ad hoc approach: 0 ∈ finitely many.
Show that R-steps do not occur in any R-derivation, or
show that R-steps do not occur in any (R ∪ S)-derivation.

Nonsensical, this is never the case . . .
. . . but could work for a restricted set of derivations.

4 / 14



Restricting the set of derivations

Definition: Right-hand sides of forward closures

RFC(R) = (→R ∪⇁right(R))
∗(rhs(R)),

where ⇁ is suffix rewriting, and
right(R) = {`1 → r | (`1`2 → r) ∈ R, `1 6= ε 6= `2}.

→R are inner steps,
⇁right(R) are suffix extension steps.

Theorem (Dershowitz’81)

R is terminating iff R is terminating on RFC(R).

Example: R = {ab → ba}
Here, right(R) = {a→ ba}, so RFC(R) = (→R ∪⇁right(R))

∗(ba) = b+a.
RFC(R) contains no R-redex, so R is terminating.

5 / 14



Restricting the set of derivations

Definition: Right-hand sides of forward closures

RFC(R) = (→R ∪⇁right(R))
∗(rhs(R)),

where ⇁ is suffix rewriting, and
right(R) = {`1 → r | (`1`2 → r) ∈ R, `1 6= ε 6= `2}.

→R are inner steps,
⇁right(R) are suffix extension steps.

Theorem (Dershowitz’81)

R is terminating iff R is terminating on RFC(R).

Example: R = {ab → ba}
Here, right(R) = {a→ ba}, so RFC(R) = (→R ∪⇁right(R))

∗(ba) = b+a.
RFC(R) contains no R-redex, so R is terminating.

5 / 14



Restricting the set of derivations

Definition: Right-hand sides of forward closures

RFC(R) = (→R ∪⇁right(R))
∗(rhs(R)),

where ⇁ is suffix rewriting, and
right(R) = {`1 → r | (`1`2 → r) ∈ R, `1 6= ε 6= `2}.

→R are inner steps,
⇁right(R) are suffix extension steps.

Theorem (Dershowitz’81)

R is terminating iff R is terminating on RFC(R).

Example: R = {ab → ba}
Here, right(R) = {a→ ba}, so RFC(R) = (→R ∪⇁right(R))

∗(ba) = b+a.
RFC(R) contains no R-redex, so R is terminating.

5 / 14



Right barren string rewriting

Generalizing McNaughton’94, Geser’01
from 1-rule to arbitrary finite systems:

Definition: R is right barren

if no ` ∈ lhs(R) is factor of a string in RFC(R).

Theorem

This property is decidable, and it implies termination.

Proof of decidability

If R is right barren, RFC(R) = ⇁right(R)
∗(rhs(R)). This set is regular,

since regularity is preserved under suffix rewriting (Büchi’64).

6 / 14



Right barren string rewriting

Generalizing McNaughton’94, Geser’01
from 1-rule to arbitrary finite systems:

Definition: R is right barren

if no ` ∈ lhs(R) is factor of a string in RFC(R).

Theorem

This property is decidable, and it implies termination.

Proof of decidability

If R is right barren, RFC(R) = ⇁right(R)
∗(rhs(R)). This set is regular,

since regularity is preserved under suffix rewriting (Büchi’64).

6 / 14



Right barren string rewriting

Generalizing McNaughton’94, Geser’01
from 1-rule to arbitrary finite systems:

Definition: R is right barren

if no ` ∈ lhs(R) is factor of a string in RFC(R).

Theorem

This property is decidable, and it implies termination.

Proof of decidability

If R is right barren, RFC(R) = ⇁right(R)
∗(rhs(R)). This set is regular,

since regularity is preserved under suffix rewriting (Büchi’64).

6 / 14



Right barren string rewriting (cont’d)

Example: R = {babbaba→ abaabbabba}

Automaton accepting rhs(R):

a b a a b b a b b a

Closure under ⇁right(R) by adding epsilon transitions:

The left-hand side of R is not a factor of any accepted string,
so R is right barren, thus terminating.

7 / 14



Right barren string rewriting (cont’d)

Example: R = {babbaba→ abaabbabba}
Automaton accepting rhs(R):

a b a a b b a b b a

Closure under ⇁right(R) by adding epsilon transitions:

The left-hand side of R is not a factor of any accepted string,
so R is right barren, thus terminating.

7 / 14



Right barren string rewriting (cont’d)

Example: R = {babbaba→ abaabbabba}
Automaton accepting rhs(R):

a b a a b b a b b a

Closure under ⇁right(R) by adding epsilon transitions:

a b a a b b a b b a

The left-hand side of R is not a factor of any accepted string,
so R is right barren, thus terminating.

7 / 14



Right barren string rewriting (cont’d)

Example: R = {babbaba→ abaabbabba}
Automaton accepting rhs(R):

a b a a b b a b b a

Closure under ⇁right(R) by adding epsilon transitions:

a b a a b b a b b a

The left-hand side of R is not a factor of any accepted string,
so R is right barren, thus terminating.

7 / 14



Right barren string rewriting (cont’d)

Example: R = {babbaba→ abaabbabba}
Automaton accepting rhs(R):

a b a a b b a b b a

Closure under ⇁right(R) by adding epsilon transitions:

a b a a b b a b b a

The left-hand side of R is not a factor of any accepted string,
so R is right barren, thus terminating.

7 / 14



Right barren string rewriting (cont’d)

Example: R = {babbaba→ abaabbabba}
Automaton accepting rhs(R):

a b a a b b a b b a

Closure under ⇁right(R) by adding epsilon transitions:

a b a a b b a b b a

The left-hand side of R is not a factor of any accepted string,
so R is right barren, thus terminating.

7 / 14



Right barren string rewriting (cont’d)

Closure algorithm: suffix matches

For state p, final state f , (`1 → r) ∈ right(R):

If there is a path p
`1→ f , add p

ε→ i ,
where i is the initial state of the path for r .

p f
`1

i
r

Termination of this algorithm: No new nodes,
so there are only finitely many possible epsilon transitions.

Decide whether ` ∈ lhs(R) is a factor of some accepted string:

check for path p
`→ q (states are accessible and co-accessible).

8 / 14



Right barren string rewriting (cont’d)

Closure algorithm: suffix matches

For state p, final state f , (`1 → r) ∈ right(R):

If there is a path p
`1→ f , add p

ε→ i ,
where i is the initial state of the path for r .

p f
`1

i
r

Termination of this algorithm: No new nodes,
so there are only finitely many possible epsilon transitions.

Decide whether ` ∈ lhs(R) is a factor of some accepted string:

check for path p
`→ q (states are accessible and co-accessible).

8 / 14



Removing relatively right barren rules

Definition: S ⊆ R is relatively right barren w. r. t. R \ S
if no ` ∈ lhs(S) is factor of a string in RFC(R).

Theorem: Let S ⊆ R be relatively right barren w. r. t. R \ S .

Then SN(R \ S) implies SN(R).

Closure algorithm: suffix and redex matches

Closure steps for suffix matches as before.
Closure steps for redex matches:
For states p, q, and (`→ r) ∈ R:

If there is a path p
`→ q, add p

ε→ i and f
ε→ q,

where i and f are the initial resp. final state of
the path for r .

p q`

i f
r

The resulting automaton over-approximates RFC(R).

9 / 14



Removing relatively right barren rules

Definition: S ⊆ R is relatively right barren w. r. t. R \ S
if no ` ∈ lhs(S) is factor of a string in RFC(R).

Theorem: Let S ⊆ R be relatively right barren w. r. t. R \ S .

Then SN(R \ S) implies SN(R).

Closure algorithm: suffix and redex matches

Closure steps for suffix matches as before.
Closure steps for redex matches:
For states p, q, and (`→ r) ∈ R:

If there is a path p
`→ q, add p

ε→ i and f
ε→ q,

where i and f are the initial resp. final state of
the path for r .

p q`

i f
r

The resulting automaton over-approximates RFC(R).

9 / 14



Removing relatively right barren rules

Definition: S ⊆ R is relatively right barren w. r. t. R \ S
if no ` ∈ lhs(S) is factor of a string in RFC(R).

Theorem: Let S ⊆ R be relatively right barren w. r. t. R \ S .

Then SN(R \ S) implies SN(R).

Closure algorithm: suffix and redex matches

Closure steps for suffix matches as before.
Closure steps for redex matches:
For states p, q, and (`→ r) ∈ R:

If there is a path p
`→ q, add p

ε→ i and f
ε→ q,

where i and f are the initial resp. final state of
the path for r .

p q`

i f
r

The resulting automaton over-approximates RFC(R).

9 / 14



Removing relatively right barren rules

Definition: S ⊆ R is relatively right barren w. r. t. R \ S
if no ` ∈ lhs(S) is factor of a string in RFC(R).

Theorem: Let S ⊆ R be relatively right barren w. r. t. R \ S .

Then SN(R \ S) implies SN(R).

Closure algorithm: suffix and redex matches

Closure steps for suffix matches as before.
Closure steps for redex matches:
For states p, q, and (`→ r) ∈ R:

If there is a path p
`→ q, add p

ε→ i and f
ε→ q,

where i and f are the initial resp. final state of
the path for r .

p q`

i f
r

The resulting automaton over-approximates RFC(R).

9 / 14



Removing relatively right barren rules (cont’d)

Example: R = {ab → ba, ba→ acb} (Zantema 04/z006)

Automaton for rhs(R):
b a

a c b

Closure under →R ∪⇁right(R):
b a

a c b

There is no path labelled by the left-hand side of S = {ab → ba}:
S is relatively right barren w. r. t. R \ S . As R \ S = {ba→ acb} is
terminating (it is right barren), R is terminating.

10 / 14



Removing relatively right barren rules (cont’d)

Example: R = {ab → ba, ba→ acb} (Zantema 04/z006)

Automaton for rhs(R):
b a

a c b

Closure under →R ∪⇁right(R):
b a

a c b

There is no path labelled by the left-hand side of S = {ab → ba}:
S is relatively right barren w. r. t. R \ S . As R \ S = {ba→ acb} is
terminating (it is right barren), R is terminating.

10 / 14



Removing relatively right barren rules (cont’d)

Example: R = {ab → ba, ba→ acb} (Zantema 04/z006)

Automaton for rhs(R):
b a

a c b

Closure under →R ∪⇁right(R):
b a

a c b

There is no path labelled by the left-hand side of S = {ab → ba}:
S is relatively right barren w. r. t. R \ S . As R \ S = {ba→ acb} is
terminating (it is right barren), R is terminating.

10 / 14



Removing relatively right barren rules (cont’d)

Example: R = {ab → ba, ba→ acb} (Zantema 04/z006)

Automaton for rhs(R):
b a

a c b

Closure under →R ∪⇁right(R):
b a

a c b

There is no path labelled by the left-hand side of S = {ab → ba}:
S is relatively right barren w. r. t. R \ S . As R \ S = {ba→ acb} is
terminating (it is right barren), R is terminating.

10 / 14



Approximating match-bounds

Refine the approximation of RFC(R) by match-heights (G/H/W’03).

Fix B ∈ N and start with B + 1 disjoints paths for each r ∈ rhs(R).
Layer h ≤ B corresponds to height h.

Initial and final states are at height 0.

Suffix matches always link to height 0.

Redex matches have height h = min(layer of letter transition);
epsilon transitions have no height.
Reject if h = B, otherwise link to reduct path at height h + 1.

In case of success: complete automaton is a
certificate for match-bound B on RFC(R).

11 / 14



Approximating match-bounds

Refine the approximation of RFC(R) by match-heights (G/H/W’03).

Fix B ∈ N and start with B + 1 disjoints paths for each r ∈ rhs(R).
Layer h ≤ B corresponds to height h.

Initial and final states are at height 0.

Suffix matches always link to height 0.

Redex matches have height h = min(layer of letter transition);
epsilon transitions have no height.
Reject if h = B, otherwise link to reduct path at height h + 1.

In case of success: complete automaton is a
certificate for match-bound B on RFC(R).

11 / 14



Approximating match-bounds

Refine the approximation of RFC(R) by match-heights (G/H/W’03).

Fix B ∈ N and start with B + 1 disjoints paths for each r ∈ rhs(R).
Layer h ≤ B corresponds to height h.

Initial and final states are at height 0.

Suffix matches always link to height 0.

Redex matches have height h = min(layer of letter transition);
epsilon transitions have no height.
Reject if h = B, otherwise link to reduct path at height h + 1.

In case of success: complete automaton is a
certificate for match-bound B on RFC(R).

11 / 14



Approximating match-bounds

Refine the approximation of RFC(R) by match-heights (G/H/W’03).

Fix B ∈ N and start with B + 1 disjoints paths for each r ∈ rhs(R).
Layer h ≤ B corresponds to height h.

Initial and final states are at height 0.

Suffix matches always link to height 0.

Redex matches have height h = min(layer of letter transition);
epsilon transitions have no height.
Reject if h = B, otherwise link to reduct path at height h + 1.

In case of success: complete automaton is a
certificate for match-bound B on RFC(R).

11 / 14



Approximating match-bounds (cont’d)

Example: R = {abaab → baabbaa} (Zantema 04/z034 reversed)

0 0 0 0 0 0 0 0
b a a b b a a

1 1 1 1 1 1 1 1
b a a b b a a

Complete automaton is a certificate for match-bound 1 on RFC(R).

Removing relatively match-bounded rules (sketch)

Now layer B represents all heights ≥ B; we never reject.

After completion, remove those rules where all redex heights are < B:
they are match-bounded relative to the remaining rules by B on RFC,
so they terminating relative to the remaining rules.

12 / 14



Approximating match-bounds (cont’d)

Example: R = {abaab → baabbaa} (Zantema 04/z034 reversed)

0 0 0 0 0 0 0 0
b a a b b a a

1 1 1 1 1 1 1 1
b a a b b a a

Complete automaton is a certificate for match-bound 1 on RFC(R).

Removing relatively match-bounded rules (sketch)

Now layer B represents all heights ≥ B; we never reject.

After completion, remove those rules where all redex heights are < B:
they are match-bounded relative to the remaining rules by B on RFC,
so they terminating relative to the remaining rules.

12 / 14



Summary and discussion

This method solves SRS STANDARD/ICFP 2010.
Weaker on non-ICFP: Solves 164 of 1056.

Cannot solve Zantema 04/z001.

But, by iteration, solves problems that are not (RFC-)match-bounded.

Two independent implementations: Confidence, no certification.

Combined with drop common prefix/suffix, nearly solves Wenzel 16:
MnM solves 222 of 226.

Implementation: keep the set of epsilon transitions transitively closed.

Strategy: fix B = 2 or choose B = 0, 1, . . . ?

Challenge: merge this method with the exact RFC-method
(Endrullis/H/W’06).

Challenge: termCOMP needs more SRS benchmarks
— that are independent of any specific method.
Continue systematic or random enumeration.

13 / 14



Summary and discussion

This method solves SRS STANDARD/ICFP 2010.
Weaker on non-ICFP: Solves 164 of 1056.

Cannot solve Zantema 04/z001.

But, by iteration, solves problems that are not (RFC-)match-bounded.

Two independent implementations: Confidence, no certification.

Combined with drop common prefix/suffix, nearly solves Wenzel 16:
MnM solves 222 of 226.

Implementation: keep the set of epsilon transitions transitively closed.

Strategy: fix B = 2 or choose B = 0, 1, . . . ?

Challenge: merge this method with the exact RFC-method
(Endrullis/H/W’06).

Challenge: termCOMP needs more SRS benchmarks
— that are independent of any specific method.
Continue systematic or random enumeration.

13 / 14


