
Cetera: Certified Termination with Agda

Dieter Hofbauer1, Johannes Waldmann2

1ASW Saarland (Germany), 2HTWK Leipzig (Germany)

20th Workshop on Termination
Leipzig, Germany, September 3–4, 2025

1 / 8

Matrix Interpretations

$ pure-matchbox --cetera -S cetera.strat z049.sys > z049.cert

Certificate

{ system = [Rule { lhs = [0,1,0,0,1,1]

, rhs = [0,0,1,0,1,1,0]}]

, reason = MatrixInterpretation

{ minterpretation = MatrixInterpretation

{ dim = 4

, int = [(1,[[1,0,0,0],[0,0,1,0],[0,1,1,1],[0,0,0,1]])

,(0,[[1,1,0,0],[0,1,0,0],[0,0,0,0],[0,0,0,1]]) ]}

, remove =

[Rule { lhs = [0,1,0,0,1,1],rhs = [0,0,1,0,1,1,0]}]

, sub = Certificate { system = [], reason = Empty}}}

$ cetera-main z049.sys z049.cert

OK

Using only weights and matrix interpretations, with a time-out of 30
seconds, Matchbox proves termination for 488 (of 1658) benchmarks
in SRS Standard. Total verification time over all certificates is < 5 s.

2 / 8

Cetera: Goals and Status

general goal: a formally verified program that checks validity of
certificates for termination of string rewriting
. . . so, same approach as CeTA (Thiemann) –

specific goals (for now)
▶ matrix interpretations (E{1,n} (HW RTA06) (DONE)
▶ sparse tiling (GHW FSCD19), approximate RFC match bounds (GHW

WST22)
needs

⋆ RCF theorem (nearly DONE)
⋆ partial models for local termination (not done)

specific method: verification in Agda
(then extract Haskell code, compile with GHC - like CeTA)

implied by using Agda: constructive proofs

3 / 8

Agda

Agda(2) (Norell 2007), based on Martin-Löf Type Theory (1972)
proposition = type, proof = program
each Agda program is (provably) total, each proof is constructive

very few built-in assumptions/mechanisms
▶ dependently typed functions

example: the concept of equality

data Eq {a : Set} : a -> a -> Set where

refl : {x : a} -> Eq x x

type checking involves normalisation and unification of type arguments
▶ recursive functions where the Agda compiler can prove termination

(Abel 1998, Abel and Altenkirch 2002)

everything can be defined from these,
there is no separate tactics language

we want (for Cetera) to stay constructive,
don’t introduce classical logic via postulates (like Color/Coq does?)

4 / 8

Constructive (Non)Termination

(this is not new, cf. accessibility in Paulson 1986)

R is terminating for x : each R-successor of x is terminating

data SN {a : Set} (R : Rel a) (x : a) : Set where

sn : (forall (y : a) -> R x y -> SN R y) -> SN R x

a proof of SN R is a (Agda-definable!) function that constructs the
levels of successors

R is non-terminating for x if there is an infinite R-derivation
x = f (0) → f (1) → . . . for Agda-definable f

data INF {a : Set} (R : Rel a) (x : a) : Set where

inf : (f : Nat -> a) -> (f zero == x)

-> (forall (y : Nat) -> R (f y) (f (succ y))) -> INF R x

this will miss some forms of termination, and of non-termination

5 / 8

RFC Theorem (proof plan)
Dershowitz 1981: SN(R) ⇐⇒ SN(R on RFC(R)).

constructive proof: block decomposition w ∈ (Σ ∪ RFC(R))∗

embed →R (arbitrary derivation) into length-lex. (from the right)
extension of (→R ∪ ⊐s)

+ on blocks.

17 : 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 1

14 : 0 0 1 0 0 1 0 0 1 1 0 111000 1 1

12 : 0 0 1 0 0 1 0 0 1 1 0 1110111000

9 : 0 0 1 0 0 1 111000 0 1110111000

8 : 0 0 1 0 0 1 11100111000 10111000

8 : 0 0 1 0 0 1 1111110001000 10111000

6 : 0 0 1 111000 111110001000 10111000

6 : 0 0 1 1110111000 1110001000 10111000

6 : 0 0 1 11101110111000 10001000 10111000

4 : 111000 1101110111000 10001000 10111000

4 : 1110111000 01110111000 10001000 10111000

4 : 111011100111000 10111000 10001000 10111000

4 : 11101111110001000 10111000 10001000 10111000

SN(→R ∪ ⊐s) via commutation (⊐s ◦ →R) ⊆ (→R ◦ ⊐s)
6 / 8

Plans, Discussion

even with proof of RFC theorem, need effective representation of
RFC(R) (as finite automaton = partial algebra)
then get sparse tiling via semantic labeling w.r.t. partial model

constructive proof for dependency pairs method (for SRS)
use multi-set of self-labelled strings

implications for derivational complexity?

compressed loop certificates (transport systems)?

unified (with CeTA) format for certificates?

competition of certificate checkers? (CeTA vs. Cetera?)
not useful (e.g., it would compare efficiency of implementation of
matrix multiplication, correctness proofs (e.g., matrix multiplication is
associative) are irrelevant for that computation)

7 / 8

Random ideas for future competitions

find proofs for restricted set of certificates (e.g., matrix only, or
DP+weights only, finite models + weights only) so a new prover
stands a chance against established ones that have a full range of
methods

make a minimal change to a fixed (open-sourced) prover (“minisat
hack track”)

. . . to the strategy expression used by a fixed prover (matchbox,
aprove, ttt2 have strategy language)
can take part in competition without writing a prover

god’s book of proofs: for each problem in TPDB: bring any certificate
(no matter how it was computed), bring a smaller certificate.

busy (elusive) beaver hunt: bring a small problem that cannot be
solved by current provers (of most recent competition) (“small” =
not larger than a known unsolved problem of the same category)

8 / 8


