Gleichungen und Ungleichungen in nichtkommutativen Ringen

Johannes Waldmann (HTWK Leipzig)

Dieter Hofbauer (Kassel)

Modelle für Gleichungen

- Gleichungssystem := Menge von formalen Polynomen mit Unbestimmten aus $V = \{a, b, ...\}$ und Koeffizienten in \mathbb{Z} Beispiel $G = \{ab ba\}$, Schreibweise: $\{ab = ba\}$.
- Ring $(M,0,1,+,\cdot)$ (M,0,+) ist kommutative Gruppe, $(M,1,\cdot)$ ist (nicht notw. komm.) Monoid, + und \cdot sind verträglich
- Interpretation (Belegung der Variablen) $i: V \to M$, fortgesetzt zu Int. auf Monomen und Polynomen
- Interpretation i heißt Modell für G, falls $\forall g \in G: i(g)=0$. Bsp.: $M=\mathbb{Z}, i: a\mapsto 3, b\mapsto 5$

Modelle für Ungleichungen (Ansatz)

- geordneter Ring: (M, <), Halbordnung < verträglich mit + und \cdot , d. h. $a < b \Rightarrow a + c < b + c$, $a < b \land 0 < c \Rightarrow ac < bc \land ca < cb$ Positivbereich $M_+ := \{m \mid m \in M, m \geq 0\}$.
- Ungleichungssystem := Menge von formalen Polynomen mit Unbestimmten aus $V = \{a, b, ...\}$ und Koeffizienten in \mathbb{Z} Beispiel $U = \{ab ba\}$, Schreibweise: $\{ab > ba\}$.
- Interpretation $i: V \to M_+$ heißt *Modell* für U, falls $\forall u \in U: i(u) > 0$.

Beispiel ab > ba hat nur nichtkommutative Modelle

Der geordnete Matrizenring

- $M = \mathbb{Z}^{d \times d}$ mit üblichem + und \cdot
- Ordnung komponentenweise:
 - $A \ge B \iff \forall j, k : A_{jk} \ge B_{jk}$
 - $A > B \iff A \ge B \land B \not\ge A$.
- Positivbereich ist $\mathbb{N}^{d \times d}$.

Beispiel:
$$M = \mathbb{Z}^{2\times 2}, i: a \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, b \mapsto \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
.

$$i(ab) = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} > \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = i(ba).$$

ist Modell für ab > ba, aber auch für $ab > b^2a^2$.

ist nicht *stabil*, denn
$$i(b \cdot ab) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = i(b \cdot ba)$$

Stabile Modelle für Ungleichungen

• Interpretation $i: V \to M_+$ heißt stabiles Modell für U, falls $\forall x \in V^*, u \in U, y \in V^*: i(x \cdot u \cdot y) > 0$.

Beispiel für $U = \{ab - ba\}$:

- Interpretation: $i(a) = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, i(b) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
- ist Modell: $i(ab) = \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}, i(ba) = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$
- ist stabil: $i(a), i(b) \ge \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, i(ab ba) \ge \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $\Rightarrow i(x \cdot u \cdot y) \ge \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} > 0.$

Wohlfundierte stabile Modelle

- Relation > heißt wohlfundiert (terminierend), falls es keine unendlich langen echt absteigenden Ketten $m_0 > m_1 > \dots$ gibt.
- Satz: Wortersetzungssystem R terminiert \iff ensprechendes Ungleichungssystem U(R) besitzt stabiles Modell M mit wohlfundiertem Positivbereich.
- Beweis: (\Leftarrow): klar, (\Rightarrow): M der freie Halbgruppenring über dem Alphabet (Linearkombinationen von Wörtern), > erzeugt durch Ersetzungsrelation \rightarrow_R^+ .

Anwendung: $\{a^2b^2 > b^3a^3\}$

$$a^{2}b^{2} = \begin{pmatrix} 1 & \boxed{4} & 4 & 2 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 1 & 0 \\ 0 & 4 & 4 & 2 & 0 \end{pmatrix}, b^{3}a^{3} = \begin{pmatrix} 1 & \boxed{0} & 4 & 2 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 & 0 \\ 0 & 4 & 1 & 2 & 0 \end{pmatrix}$$

ist stabiles Modell, denn $0 < \{a, b\}^* \cdot (a^2b^2 - b^3a^3) \cdot \{a, b\}^*$

Anwendung: $\{a^2 > bc, b^2 > ac, c^2 > ab\}$

(RTA List of Open Problems # 104)

Stabile Matrix-Interpretation ist bis heute die einzige Methode, die für dieses System Termination zeigt.

Eine Hierarchie

- Die *Dimension* eines Ungleichungssystems U über einem Ring M ist die kleinste Zahl d, so daß es stabile U-Interpretation in $M^{d \times d}$ gibt.
- $\{a^2>bc,b^2>ac,c^2>ab\}$ hat Dimension ≤ 5 über \mathbb{Z} .
- Ist diese Dimensions-Hierarchie echt?
- in Matrixringen gelten polynomielle Identitäten: in $M^{2\times 2}$ gilt $[[a,b]^2,c]=0$ mit [x,y]:=xy-yx.
- also hat $\{ababc > cbaba, babac > cabab, cabba > abbac, cbaab > baabc\}$ nicht die Dimension 2.

Grenzen des Wachstums

Gegeben ein stabiles Modell (Menge von Matrizen) i für Ungleichungssystem U zu Ersetzungssystem R. Wachstumsfunktion $w: n \mapsto \max\{i(x)_{j,k} \mid x, j, k\}$. Das System R hat Ableitungskomplexität O(w). Triviale obere Schranke ist exponentiell. Beispiele für ab > ba:

•
$$i(a) = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, i(b) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 exponentiell

•
$$i(a) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, i(b) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 quadratisch

(obere Dreiecksmatrizen mit Diagonal-Einträgen ≤ 1)

Grenzen des Wachstums (II)

- Welche Wachstumsfunktionen sind darstellbar?
- Gilt ein gap theorem (nur polynomielles und exponentielles Wachstum)?
- Kann man den Grad des Polynoms berechnen?
- ... oder entscheiden, ob er $\leq d$ ist?

Grenzen des Wachstums (III)

Vergleiche entscheidbare Fragen zu

Wachstum von D0L-Folgen

Bsp:
$$\phi^n(a)$$
 für $\phi: a \mapsto abc, b \mapsto ac, c \mapsto a$, entspr $\left\{ \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \right\}$),

Dichtefunktionen von regulären Sprachen

$$d_L: n \mapsto \#\{w \mid w \in \Sigma^* \cap L\}.$$

Bsp:
$$d_{a^*b^*c^*} = \Theta(n^2)$$
.

Schrittweise Konstruktion von Modellen

vgl. relative Termination

- Wenn $i_1:V\to M_1$ ein Modell für das Ungleichungssystem U_1 und ein (Quasi-)Modell für das Gleichungssystem U_2 ist
- und $i_2:V\to M_2$ ein Modell für das Ungleichungssystem U_2 ,
- dann ist das *lexikografische Produkt* $i: V \mapsto M_1 \times M_2: a \mapsto (i_1(a), i_2(a))$ ein Modell für das Ungleichungssytem $U_1 \cup U_2$.

 $M_1 \times M_2$ ist geordneter Ring: Operationen unabhängig komponentenweise, Ordnung lexikografisch

Schrittweise Konstruktion (Beispiel)

- $U = \{as > sa, babs > absa, bab^2 > abab, aba^2 > baba\}$
- $U_1 = \{as > sa, babs > absa\}$ und Interpretation

$$a = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, s = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
$$as - sa = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, babs - absa = \begin{pmatrix} 1 & 6 \\ 0 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 5 \\ 0 & 2 \end{pmatrix},$$
$$bab^2 - abab = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}, aba^2 - baba = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$$

• bleibt $U_2 = \{bab^2 > abab, aba^2 > baba\}$

chrittweise Konstruktion (Beispiel cont.

$$U_2 = \{bab^2 > abab, aba^2 > baba\}$$

$$a = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, b = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 2 \end{pmatrix}$$

$$bab^{2} - abab = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 4 & 1 & 0 & 5 \\ 2 & 0 & 0 & 2 \\ 6 & 0 & 0 & 4 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 2 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$aba^{2} - baba = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 2 & 0 \\ 6 & 0 & 4 & 0 \\ 2 & 0 & 2 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 2 & 0 \end{pmatrix}$$

Bestimmung der Matrixeinträge

- Einträge als Unbekannte über N, gibt System von Ungleichungen zwischen Polynomen.
- Exakte Lösung praktisch nicht möglich (Grad ist > 1).
- Iterative Lösung (diskrete Optimierung, z. B. genetische Algorithmen).
- nach Festhalten von Dimension und maximaler Höhe der Einträge ergibt sich ein endliches Problem, das kann im Prinzip durch finite domain constraint solver behandelt werden.

Bestimmung der Matrixeinträge (II)

- Unbekannte als Binärzahlen ansetzen,
- dann Constraints als logische Schaltung (aussagenlogische Formel) kodieren, (benötigt viele viele Hilfsvariablen: Matrixprodukte, Skalarprodukte, Summation, Multiplikation)
- dann dafür erfüllende Belegung suchen.
- benutzen SateliteGTI, Gewinner der SAT competition 2005.
- dieses Verfahren allein löst ca. 95 von 125
 Problemen aus der Termination Problen Data Base